Search results
Results From The WOW.Com Content Network
A bimodal distribution. Figure 3. A bivariate, multimodal distribution Figure 4. A non-example: a unimodal distribution, that would become multimodal if conditioned on either x or y. In statistics, a multimodal distribution is a probability distribution with more than one mode (i.e., more than one local
In statistics, a unimodal probability distribution or unimodal distribution is a probability distribution which has a single peak. The term "mode" in this context refers to any peak of the distribution, not just to the strict definition of mode which is usual in statistics. If there is a single mode, the distribution function is called ...
The shape of a distribution will fall somewhere in a continuum where a flat distribution might be considered central and where types of departure from this include: mounded (or unimodal), U-shaped, J-shaped, reverse-J shaped and multi-modal. [1] A bimodal distribution would have two high points rather than one. The shape of a distribution is ...
The uniform distribution or rectangular distribution on [a,b], where all points in a finite interval are equally likely, is a special case of the four-parameter Beta distribution. The Irwin–Hall distribution is the distribution of the sum of n independent random variables, each of which having the uniform distribution on [0,1].
Such a continuous distribution is called multimodal (as opposed to unimodal). In symmetric unimodal distributions, such as the normal distribution, the mean (if defined), median and mode all coincide. For samples, if it is known that they are drawn from a symmetric unimodal distribution, the sample mean can be used as an estimate of the ...
It is the probability model for the outcomes of tossing a fair coin, rolling a fair die, etc. The univariate continuous uniform distribution on an interval [a, b] has the property that all sub-intervals of the same length are equally likely. Binomial distribution with normal approximation for n = 6 and p = 0.5
The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.
When =, the Von Mises–Fisher distribution, (,) on simplifies to the uniform distribution on . The density is constant with value C p ( 0 ) {\displaystyle C_{p}(0)} . Pseudo-random samples can be generated by generating samples in R p {\displaystyle \mathbb {R} ^{p}} from the standard multivariate normal distribution, followed by normalization ...