Search results
Results From The WOW.Com Content Network
Data reconciliation is a technique that targets at correcting measurement errors that are due to measurement noise, i.e. random errors.From a statistical point of view the main assumption is that no systematic errors exist in the set of measurements, since they may bias the reconciliation results and reduce the robustness of the reconciliation.
Data type validation is customarily carried out on one or more simple data fields. The simplest kind of data type validation verifies that the individual characters provided through user input are consistent with the expected characters of one or more known primitive data types as defined in a programming language or data storage and retrieval ...
If you encounter a page with a {} or {} that shows an , then please check if the value is wrong (in which case, it can just be changed back to the value in the verified revision; the bot will do the rest), or if there is a mistake in the verified revision (if so, it may need an update of the index; if you need help with that, please ask the ...
An example of a data-integrity mechanism is the parent-and-child relationship of related records. If a parent record owns one or more related child records all of the referential integrity processes are handled by the database itself, which automatically ensures the accuracy and integrity of the data so that no child record can exist without a parent (also called being orphaned) and that no ...
User input validation: User input (gathered by any peripheral such as a keyboard, bio-metric sensor, etc.) is validated by checking if the input provided by the software operators or users meets the domain rules and constraints (such as data type, range, and format).
A checkbox (check box, tickbox, tick box) is a graphical widget that allows the user to make a binary choice, i.e. a choice between one of two possible mutually exclusive options. For example, the user may have to answer 'yes' (checked) or 'no' (not checked) on a simple yes/no question .
Verification is intended to check that a product, service, or system meets a set of design specifications. [6] [7] In the development phase, verification procedures involve performing special tests to model or simulate a portion, or the entirety, of a product, service, or system, then performing a review or analysis of the modeling results.
A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]