When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Support vector machine - Wikipedia

    en.wikipedia.org/wiki/Support_vector_machine

    The soft-margin support vector machine described above is an example of an empirical risk minimization (ERM) algorithm for the hinge loss. Seen this way, support vector machines belong to a natural class of algorithms for statistical inference, and many of its unique features are due to the behavior of the hinge loss.

  3. Sequential minimal optimization - Wikipedia

    en.wikipedia.org/wiki/Sequential_minimal...

    Consider a binary classification problem with a dataset (x 1, y 1), ..., (x n, y n), where x i is an input vector and y i ∈ {-1, +1} is a binary label corresponding to it. A soft-margin support vector machine is trained by solving a quadratic programming problem, which is expressed in the dual form as follows:

  4. Hinge loss - Wikipedia

    en.wikipedia.org/wiki/Hinge_loss

    The plot shows that the Hinge loss penalizes predictions y < 1, corresponding to the notion of a margin in a support vector machine. In machine learning, the hinge loss is a loss function used for training classifiers. The hinge loss is used for "maximum-margin" classification, most notably for support vector machines (SVMs). [1]

  5. Corinna Cortes - Wikipedia

    en.wikipedia.org/wiki/Corinna_Cortes

    In 2008, she jointly with Vladimir Vapnik received the Paris Kanellakis Award for the development of a highly effective algorithm for supervised learning known as support vector machines (SVM). [10] She was named an ACM Fellow in 2023 for theoretical and practical contributions to machine learning, industrial leadership and service to the field.

  6. Regularization perspectives on support vector machines

    en.wikipedia.org/wiki/Regularization...

    Regularization perspectives on support-vector machines interpret SVM as a special case of Tikhonov regularization, specifically Tikhonov regularization with the hinge loss for a loss function. This provides a theoretical framework with which to analyze SVM algorithms and compare them to other algorithms with the same goals: to generalize ...

  7. Margin classifier - Wikipedia

    en.wikipedia.org/wiki/Margin_classifier

    In machine learning (ML), a margin classifier is a type of classification model which is able to give an associated distance from the decision boundary for each data sample. For instance, if a linear classifier is used, the distance (typically Euclidean , though others may be used) of a sample from the separating hyperplane is the margin of ...

  8. Stability (learning theory) - Wikipedia

    en.wikipedia.org/wiki/Stability_(learning_theory)

    Support Vector Machine (SVM) classification with a bounded kernel and where the regularizer is a norm in a Reproducing Kernel Hilbert Space. A large regularization constant leads to good stability. [4] Soft margin SVM classification. [4] Regularized Least Squares regression. [4] The minimum relative entropy algorithm for classification. [4]

  9. Category:Support vector machines - Wikipedia

    en.wikipedia.org/wiki/Category:Support_vector...

    Margin (machine learning) R. Radial basis function kernel; ... Structured support vector machine This page was last edited on 29 July 2022, at 03:27 (UTC). Text ...