Search results
Results From The WOW.Com Content Network
This ensures that all functions from #invoke can use either the current frame or the parent frame, and it also trims whitespace for all arguments and removes blank arguments.]] local mt = {__index = function (t, k) return function (frame) if not getArgs then getArgs = require ('Module:Arguments'). getArgs end return wrap [k](getArgs (frame ...
This, like any homomorphism of mathematical objects, is just a mapping that preserves the structure of the objects. Another name for a homomorphism of R-modules is an R-linear map. A bijective module homomorphism f : M → N is called a module isomorphism, and the two modules M and N are called isomorphic. Two isomorphic modules are identical ...
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.
A primitive root modulo m exists if and only if m is equal to 2, 4, p k or 2p k, where p is an odd prime number and k is a positive integer. If a primitive root modulo m exists, then there are exactly φ(φ(m)) such primitive roots, where φ is the Euler's totient function.
SymPy is an open-source Python library for symbolic computation.It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3]
Python's is operator may be used to compare object identities (comparison by reference), and comparisons may be chained—for example, a <= b <= c. Python uses and, or, and not as Boolean operators. Python has a type of expression named a list comprehension, and a more general expression named a generator expression. [78]
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.
The acronym's procedural application does not match experts' intuitive understanding of mathematical notation: mathematical notation indicates groupings in ways other than parentheses or brackets and a mathematical expression is a tree-like hierarchy rather than a linearly "ordered" structure; furthermore, there is no single order by which ...