Search results
Results From The WOW.Com Content Network
Organs that are remote from the site of irradiation will only receive a small equivalent dose (mainly due to scattering) and therefore contribute little to the effective dose, even if the weighting factor for that organ is high. Effective dose is used to estimate stochastic risks for a ‘reference’ person, which is an average of the population.
Effective dose is a dose quantity in the International Commission on Radiological Protection (ICRP) system of radiological protection. [1]It is the tissue-weighted sum of the equivalent doses in all specified tissues and organs of the human body and represents the stochastic health risk to the whole body, which is the probability of cancer induction and genetic effects, of low levels of ...
The effective dose refers to the radiation risk averaged over the entire body. [4] It is the sum of the equivalent dosage of all exposed organs or tissues. [4] Equivalent dose and effective dose are measured in sieverts (Sv). [4] Dose quantities used in radiation protection
The internal radiation dose due to injection, ingestion or inhalation radioactive substances is known as committed dose.. The ICRP defines Committed effective dose, E(t) as the sum of the products of the committed organ or tissue equivalent doses and the appropriate tissue weighting factors W T, where t is the integration time in years following the intake.
When a whole body is irradiated uniformly only the radiation weighting factor W R is used, and the effective dose equals the whole body equivalent dose. But if the irradiation of a body is partial or non-uniform the tissue factor W T is used to calculate dose to each organ or tissue. These are then summed to obtain the effective dose.
The ICRP recommends limiting artificial irradiation of the public to an average of 100 mrem (1 mSv) of effective dose per year, not including medical and occupational exposures. [10] For comparison, radiation levels inside the United States Capitol are 85 mrem/yr (0.85 mSv/yr), close to the regulatory limit, because of the uranium content of ...
"The calculation of the committed effective dose equivalent (CEDE) begins with the determination of the equivalent dose, H T, to a tissue or organ, T. Where D T ,R is the absorbed dose in rads (one gray, an SI unit, equals 100 rads) averaged over the tissue or organ, T, due to radiation type, R, and W R is the radiation weighting factor.
That model calculates an effective radiation dose, measured in units of rem, which is more representative of the stochastic risk than the absorbed dose in rad. In most power plant scenarios, where the radiation environment is dominated by X-or gamma rays applied uniformly to the whole body, 1 rad of absorbed dose gives 1 rem of effective dose. [5]