When.com Web Search

  1. Ads

    related to: adjacent color meaning in math problems examples for kids

Search results

  1. Results From The WOW.Com Content Network
  2. Distinguishing coloring - Wikipedia

    en.wikipedia.org/wiki/Distinguishing_coloring

    In graph theory, a distinguishing coloring or distinguishing labeling of a graph is an assignment of colors or labels to the vertices of the graph that destroys all of the nontrivial symmetries of the graph. The coloring does not need to be a proper coloring: adjacent vertices are allowed to be given the same color. For the colored graph, there ...

  3. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    Given a graph G and given a set L(v) of colors for each vertex v (called a list), a list coloring is a choice function that maps every vertex v to a color in the list L(v). As with graph coloring, a list coloring is generally assumed to be proper , meaning no two adjacent vertices receive the same color.

  4. Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring

    An edge coloring of a graph is a proper coloring of the edges, meaning an assignment of colors to edges so that no vertex is incident to two edges of the same color. An edge coloring with k colors is called a k -edge-coloring and is equivalent to the problem of partitioning the edge set into k matchings .

  5. Four color theorem - Wikipedia

    en.wikipedia.org/wiki/Four_color_theorem

    In graph-theoretic terms, the theorem states that for loopless planar graph, its chromatic number is ().. The intuitive statement of the four color theorem – "given any separation of a plane into contiguous regions, the regions can be colored using at most four colors so that no two adjacent regions have the same color" – needs to be interpreted appropriately to be correct.

  6. Brooks' theorem - Wikipedia

    en.wikipedia.org/wiki/Brooks'_theorem

    A more general version of the theorem applies to list coloring: given any connected undirected graph with maximum degree Δ that is neither a clique nor an odd cycle, and a list of Δ colors for each vertex, it is possible to choose a color for each vertex from its list so that no two adjacent vertices have the same color. In other words, the ...

  7. Perfect graph - Wikipedia

    en.wikipedia.org/wiki/Perfect_graph

    A graph coloring assigns a color to each vertex so that each two adjacent vertices have different colors, also shown in the illustration. The chromatic number of a graph is the minimum number of colors in any coloring. The colorings shown are optimal, so the chromatic number is three for the 7-cycle and four for the other graph shown.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Adjacent-vertex-distinguishing-total coloring - Wikipedia

    en.wikipedia.org/wiki/Adjacent-vertex...

    The adjacent-vertex-distinguishing-total-chromatic number χ at (G) of a graph G is the fewest colors needed in an AVD-total-coloring of G. The following lower bound for the AVD-total chromatic number can be obtained from the definition of AVD-total-coloring: If a simple graph G has two adjacent vertices of maximum degree, then χ at ( G ) ≥ ...