When.com Web Search

  1. Ads

    related to: adjacent color meaning in math problems examples worksheets

Search results

  1. Results From The WOW.Com Content Network
  2. List coloring - Wikipedia

    en.wikipedia.org/wiki/List_coloring

    For a graph G, let χ(G) denote the chromatic number and Δ(G) the maximum degree of G.The list coloring number ch(G) satisfies the following properties.. ch(G) ≥ χ(G).A k-list-colorable graph must in particular have a list coloring when every vertex is assigned the same list of k colors, which corresponds to a usual k-coloring.

  3. Graph coloring - Wikipedia

    en.wikipedia.org/wiki/Graph_coloring

    For example, using three colors, the graph in the adjacent image can be colored in 12 ways. With only two colors, it cannot be colored at all. With four colors, it can be colored in 24 + 4 × 12 = 72 ways: using all four colors, there are 4! = 24 valid colorings ( every assignment of four colors to any 4-vertex graph is a proper coloring); and ...

  4. Distinguishing coloring - Wikipedia

    en.wikipedia.org/wiki/Distinguishing_coloring

    In graph theory, a distinguishing coloring or distinguishing labeling of a graph is an assignment of colors or labels to the vertices of the graph that destroys all of the nontrivial symmetries of the graph. The coloring does not need to be a proper coloring: adjacent vertices are allowed to be given the same color. For the colored graph, there ...

  5. Greedy coloring - Wikipedia

    en.wikipedia.org/wiki/Greedy_coloring

    A parsimonious coloring, for a given graph and vertex ordering, has been defined to be a coloring produced by a greedy algorithm that colors the vertices in the given order, and only introduces a new color when all previous colors are adjacent to the given vertex, but can choose which color to use (instead of always choosing the smallest) when ...

  6. Adjacent-vertex-distinguishing-total coloring - Wikipedia

    en.wikipedia.org/wiki/Adjacent-vertex...

    The adjacent-vertex-distinguishing-total-chromatic number χ at (G) of a graph G is the fewest colors needed in an AVD-total-coloring of G. The following lower bound for the AVD-total chromatic number can be obtained from the definition of AVD-total-coloring: If a simple graph G has two adjacent vertices of maximum degree, then χ at ( G ) ≥ ...

  7. Total coloring - Wikipedia

    en.wikipedia.org/wiki/Total_coloring

    The total chromatic number χ″(G) of a graph G is the fewest colors needed in any total coloring of G. The total graph T = T(G) of a graph G is a graph such that (i) the vertex set of T corresponds to the vertices and edges of G and (ii) two vertices are adjacent in T if and only if their corresponding elements are either adjacent or incident ...