Search results
Results From The WOW.Com Content Network
In the absence of a Y chromosome, the fetus will undergo female development. This is because of the presence of the sex-determining region of the Y chromosome, also known as the SRY gene. [5] Thus, male mammals typically have an X and a Y chromosome (XY), while female mammals typically have two X chromosomes (XX).
Sex differences in human physiology are distinctions of physiological characteristics associated with either male or female humans. These differences are caused by the effects of the different sex chromosome complement in males and females, and differential exposure to gonadal sex hormones during development.
After examination, it was discovered that the difference between a typical XX individual (traditional female) and a sex-reversed XX man was that the typical individuals lacked the SRY gene. It is theorized that in sex-reversed XX men, the SRY gets translocated to an X chromosome in the XX pair during meiosis. [8]
No genes are shared between the avian ZW and mammal XY chromosomes [26] and the chicken Z chromosome is similar to the human autosomal chromosome 9, rather than X or Y. This suggests not that the ZW and XY sex-determination systems share an origin but that the sex chromosomes are derived from autosomal chromosomes of the common ancestor of ...
Sexual differentiation is the process of development of the sex differences between males and females from an undifferentiated zygote. [1] [2] Sex determination is often distinct from sex differentiation; sex determination is the designation for the development stage towards either male or female, while sex differentiation is the pathway towards the development of the phenotype.
Sex differences in human physiology are distinctions of physiological characteristics associated with either male or female humans. These can be of several types, including direct and indirect, direct being the direct result of differences prescribed by the Y-chromosome (due to the SRY gene ), and indirect being characteristics influenced ...
The common pathway of sexual differentiation, where a productive human female has an XX chromosome pair, and a productive male has an XY pair, is relevant to the development of intersex conditions. During fertilization, the sperm adds either an X (female) or a Y (male) chromosome to the X in the ovum. This determines the genetic sex of the embryo.
In this process, an X chromosome and a Y chromosome act to determine the sex of offspring, often due to genes located on the Y chromosome that code for maleness. Offspring have two sex chromosomes: an offspring with two X chromosomes (XX) will develop female characteristics, and an offspring with an X and a Y chromosome (XY) will develop male ...