When.com Web Search

  1. Ads

    related to: deep learning for dummies

Search results

  1. Results From The WOW.Com Content Network
  2. Deep learning - Wikipedia

    en.wikipedia.org/wiki/Deep_learning

    Deep learning is a subset of machine learning that focuses on utilizing neural networks to perform tasks such as classification, regression, and representation learning. The field takes inspiration from biological neuroscience and is centered around stacking artificial neurons into layers and "training" them to process data.

  3. Region Based Convolutional Neural Networks - Wikipedia

    en.wikipedia.org/wiki/Region_Based_Convolutional...

    Region-based Convolutional Neural Networks (R-CNN) are a family of machine learning models for computer vision, and specifically object detection and localization. [1] The original goal of R-CNN was to take an input image and produce a set of bounding boxes as output, where each bounding box contains an object and also the category (e.g. car or ...

  4. Quantum neural network - Wikipedia

    en.wikipedia.org/wiki/Quantum_neural_network

    For a deep learning network, increase the number of hidden layers. Quantum neural networks are computational neural network models which are based on the principles of quantum mechanics . The first ideas on quantum neural computation were published independently in 1995 by Subhash Kak and Ron Chrisley, [ 1 ] [ 2 ] engaging with the theory of ...

  5. Generative pre-trained transformer - Wikipedia

    en.wikipedia.org/wiki/Generative_pre-trained...

    Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset. [18]

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    The plain transformer architecture had difficulty converging. In the original paper [1] the authors recommended using learning rate warmup. That is, the learning rate should linearly scale up from 0 to maximal value for the first part of the training (usually recommended to be 2% of the total number of training steps), before decaying again.

  7. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    MATLAB + Deep Learning Toolbox (formally Neural Network Toolbox) MathWorks: 1992 Proprietary: No Linux, macOS, Windows: C, C++, Java, MATLAB: MATLAB: No No Train with Parallel Computing Toolbox and generate CUDA code with GPU Coder [23] No Yes [24] Yes [25] [26] Yes [25] Yes [25] Yes With Parallel Computing Toolbox [27] Yes Microsoft Cognitive ...

  8. Layer (deep learning) - Wikipedia

    en.wikipedia.org/wiki/Layer_(Deep_Learning)

    A layer in a deep learning model is a structure or network topology in the model's architecture, which takes information from the previous layers and then passes it to the next layer. Layer types [ edit ]

  9. Topological deep learning - Wikipedia

    en.wikipedia.org/wiki/Topological_Deep_Learning

    The term ``topological deep learning``, including multichannel TDL and multitask TDL, was first introduced in 2017. [15] Traditional techniques from deep learning often operate under the assumption that a dataset is residing in a highly-structured space (like images, where convolutional neural networks exhibit outstanding performance over alternative methods) or a Euclidean space.