Search results
Results From The WOW.Com Content Network
Digital 16-QAM with example symbols Constellation points for 4-QAM, 16-QAM, 32-QAM, and 64-QAM overlapped. As in many digital modulation schemes, the constellation diagram is useful for QAM. In QAM, the constellation points are usually arranged in a square grid with equal vertical and horizontal spacing, although other configurations are ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
The advantage of APSK over conventional QAM is a lower number of possible amplitude levels and therefore a lower peak-to-average power ratio (PAPR). [2] The resilience of APSK to amplifier and channel non-linearities afforded by its low PAPR have made it especially attractive for satellite communications, including DVB-S2 .
Owing to PSK's simplicity, particularly when compared with its competitor quadrature amplitude modulation, it is widely used in existing technologies. The wireless LAN standard, IEEE 802.11b-1999, [10] [11] uses a variety of different PSKs depending on the data rate required. At the basic rate of 1 Mbit/s, it uses DBPSK (differential BPSK).
An OFDM carrier signal is the sum of a number of orthogonal subcarriers, with baseband data on each subcarrier being independently modulated commonly using some type of quadrature amplitude modulation (QAM) or phase-shift keying (PSK). This composite baseband signal is typically used to modulate a main RF carrier.
The phase modulation (φ(t), not shown) is a non-linearly increasing function from 0 to π /2 over the interval 0 < t < 16. The two amplitude-modulated components are known as the in-phase component (I, thin blue, decreasing) and the quadrature component (Q, thin red, increasing).
A constellation diagram is a representation of a signal modulated by a digital modulation scheme such as quadrature amplitude modulation or phase-shift keying. [1] It displays the signal as a two-dimensional xy-plane scatter diagram in the complex plane at symbol sampling instants.
Amplitude-shift keying (ASK) is a form of amplitude modulation that represents digital data as variations in the amplitude of a carrier wave. [1] In an ASK system, a symbol, representing one or more bits, is sent by transmitting a fixed-amplitude carrier wave at a fixed frequency for a specific time duration.