When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Additive inverse - Wikipedia

    en.wikipedia.org/wiki/Additive_inverse

    In a vector space, the additive inverse −v (often called the opposite vector of v) has the same magnitude as v and but the opposite direction. [11] In modular arithmetic, the modular additive inverse of x is the number a such that a + x ≡ 0 (mod n) and always exists. For example, the inverse of 3 modulo 11 is 8, as 3 + 8 ≡ 0 (mod 11). [12]

  3. Inverse element - Wikipedia

    en.wikipedia.org/wiki/Inverse_element

    For example, addition is a total associative operation on nonnegative integers, which has 0 as additive identity, and 0 is the only element that has an additive inverse. This lack of inverses is the main motivation for extending the natural numbers into the integers.

  4. Unit (ring theory) - Wikipedia

    en.wikipedia.org/wiki/Unit_(ring_theory)

    The multiplicative identity 1 and its additive inverse −1 are always units. More generally, any root of unity in a ring R is a unit: if r n = 1, then r n−1 is a multiplicative inverse of r. In a nonzero ring, the element 0 is not a unit, so R × is not closed under addition.

  5. Adjoint functors - Wikipedia

    en.wikipedia.org/wiki/Adjoint_functors

    Then F and G can be restricted to D 1 and C 1 and yield inverse equivalences of these subcategories. In a sense, then, adjoints are "generalized" inverses. Note however that a right inverse of F (i.e. a functor G such that FG is naturally isomorphic to 1 D) need not be a right (or left) adjoint of F. Adjoints generalize two-sided inverses.

  6. Ring (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Ring_(mathematics)

    The axioms of modules imply that (−1)x = −x, where the first minus denotes the additive inverse in the ring and the second minus the additive inverse in the module. Using this and denoting repeated addition by a multiplication by a positive integer allows identifying abelian groups with modules over the ring of integers.

  7. Even and odd functions - Wikipedia

    en.wikipedia.org/wiki/Even_and_odd_functions

    However, the concepts may be more generally defined for functions whose domain and codomain both have a notion of additive inverse. This includes abelian groups, all rings, all fields, and all vector spaces. Thus, for example, a real function could be odd or even (or neither), as could a complex-valued function of a vector variable, and so on.

  8. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    For example, the identity element of addition is 0 since any sum of a number and 0 results in the same number. The inverse element is the element that results in the identity element when combined with another element. For instance, the additive inverse of the number 6 is -6 since their sum is 0. [41]

  9. Skew-symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Skew-symmetric_matrix

    This is an example of the Youla decomposition of a complex square matrix. [6] Skew-symmetric and alternating forms ... as every element is its own additive inverse. ...