Search results
Results From The WOW.Com Content Network
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [1] and the LaTeX symbol.
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
Sentences are then built up out of atomic sentences by applying connectives and quantifiers. A set of sentences is called a theory; thus, individual sentences may be called theorems. To properly evaluate the truth (or falsehood) of a sentence, one must make reference to an interpretation of the theory.
An interpretation is an assignment of meaning to the symbols of a formal language.Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation.
Rigor is a cornerstone quality of mathematics, and can play an important role in preventing mathematics from degenerating into fallacies. well-behaved An object is well-behaved (in contrast with being Pathological ) if it satisfies certain prevailing regularity properties, or if it conforms to mathematical intuition (even though intuition can ...
The consequence of these features is that a mathematical text is generally not understandable without some prerequisite knowledge. For example, the sentence "a free module is a module that has a basis" is perfectly correct, although it appears only as a grammatically correct nonsense, when one does not know the definitions of basis, module, and free module.
A valid number sentence that is true: 83 + 19 = 102. A valid number sentence that is false: 1 + 1 = 3. A valid number sentence using a 'less than' symbol: 3 + 6 < 10. A valid number sentence using a 'more than' symbol: 3 + 9 > 11. An example from a lesson plan: [6] Some students will use a direct computational approach.
The term 'expression' is part of the language of mathematics, that is to say, it is not defined within mathematics, but taken as a primitive part of the language. To attempt to define the term would not be doing mathematics, but rather, one would be engaging in a kind of metamathematics (the metalanguage of mathematics), usually mathematical logic.