Search results
Results From The WOW.Com Content Network
The multiplication factor, k, is defined as (see nuclear chain reaction): k = number of neutrons in one generation / number of neutrons in preceding generation . If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
Fission occurs when a heavy nuclide such as uranium-235 absorbs a neutron and breaks into nuclides of lighter elements such as barium or krypton, usually with the release of additional neutrons. Like all nuclides with a high atomic number, these uranium nuclei require many neutrons to bolster their stability, so they have a large neutron-proton ...
In a nuclear reactor, the neutron population at any instant is a function of the rate of neutron production (due to fission processes) and the rate of neutron losses (due to non-fission absorption mechanisms and leakage from the system). When a reactor's neutron population remains steady from one generation to the next (creating as many new ...
The multiplication factor, k, is defined as (see Nuclear chain reaction): = If k is greater than 1, the chain reaction is supercritical, and the neutron population will grow exponentially.
Concentration/Density: Neutron reactions leading to scattering, capture or fission reactions are more likely to occur in dense materials; conversely, neutrons are more likely to escape (leak) from low density materials. Moderation: Neutrons resulting from fission are typically fast (high energy). These fast neutrons do not cause fission as ...
The chance of fissioning on absorption of a thermal neutron is about 92%; the capture-to-fission ratio of 233 U, therefore, is about 1:12 – which is better than the corresponding capture vs. fission ratios of 235 U (about 1:6), or 239 Pu or 241 Pu (both about 1:3).
A less moderated neutron energy spectrum does worsen the capture/fission ratio for 235 U and especially 239 Pu, meaning that more fissile nuclei fail to fission on neutron absorption and instead capture the neutron to become a heavier nonfissile isotope, wasting one or more neutrons and increasing accumulation of heavy transuranic actinides ...
In nuclear astrophysics, the rapid neutron-capture process, also known as the r-process, is a set of nuclear reactions that is responsible for the creation of approximately half of the atomic nuclei heavier than iron, the "heavy elements", with the other half produced by the p-process and s-process.