When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Aircraft principal axes - Wikipedia

    en.wikipedia.org/wiki/Aircraft_principal_axes

    The yaw axis has its origin at the center of gravity and is directed towards the bottom of the aircraft, perpendicular to the wings and to the fuselage reference line. Motion about this axis is called yaw. A positive yawing motion moves the nose of the aircraft to the right. [1] [2] The rudder is the primary control of yaw. [3]

  3. Aircraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Aircraft_flight_dynamics

    The body x-axis does not align with the velocity vector, which is the reference direction for wind axes. In other words, wind axes are not principal axes (the mass is not distributed symmetrically about the yaw and roll axes). Consider the motion of an element of mass in position -z, x in the direction of the y-axis, i.e. into the plane of the ...

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The most external matrix rotates the other two, leaving the second rotation matrix over the line of nodes, and the third one in a frame comoving with the body. There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles. These 12 ...

  5. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    Otherwise, there is no axis plane. The case of θ = φ is called an isoclinic rotation, having eigenvalues e ±iθ repeated twice, so every vector is rotated through an angle θ. The trace of a rotation matrix is equal to the sum of its eigenvalues. For n = 2, a rotation by angle θ has trace 2 cos θ. For n = 3, a rotation around any axis by ...

  6. Cartesian coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cartesian_coordinate_system

    The z-axis is vertical and the x-axis is highlighted in green. Thus, the red plane shows the points with x = 1, the blue plane shows the points with z = 1, and the yellow plane shows the points with y = −1. The three surfaces intersect at the point P (shown as a black sphere) with the Cartesian coordinates (1, −1, 1).

  7. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    ] In four dimensions and above, the concept of "rotation about an axis" loses meaning and instead becomes "rotation in a plane." The number of Euler angles needed to represent the group SO( n ) is n ( n − 1)/2 , equal to the number of planes containing two distinct coordinate axes in n -dimensional Euclidean space.

  8. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    A surface generated by revolving a plane curve about a fixed line in its plane as an axis is called a surface of revolution. The plane curve is called the generatrix of the surface. A section of the surface, made by intersecting the surface with a plane that is perpendicular (orthogonal) to the axis, is a circle.

  9. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).