Search results
Results From The WOW.Com Content Network
Chloroethane, commonly known as ethyl chloride, is a chemical compound with chemical formula CH 3 CH 2 Cl, once widely used in producing tetraethyllead, a gasoline additive. It is a colorless, flammable gas or refrigerated liquid with a faintly sweet odor.
In the laboratory it is occasionally used as a source of chlorine, with elimination of ethene and chloride. Via several steps, 1,2-dichloroethane is a precursor to 1,1,1-trichloroethane . Historically, before leaded petrol was phased out, chloroethanes were used as an additive in petrol to prevent lead buildup in engines.
The National Emission Standards for Hazardous Air Pollutants (NESHAP) are air pollution standards issued by the United States Environmental Protection Agency (EPA). The standards, authorized by the Clean Air Act, are for pollutants not covered by the National Ambient Air Quality Standards (NAAQS) that may cause an increase in fatalities or in serious, irreversible, or incapacitating illness.
The major products were ethyl chloride, tetrachlorocarbon and dichloromethane. [7] Because of concerns about health and environmentally relevant problems such as the ozone depletion behavior of light volatile chlorine compounds, the chemical industry developed alternative procedures that did not require chlorinated compounds. As a result of the ...
Chlorination of tetrachloroethylene at 100–140 °C with the presence of ferric chloride is the most commonly used commercial production method, however several other methods exist. A high purity form can be produced in a small scale by reacting chlorine together with barium carbide .
Tetraethyllead was produced from ethyl chloride and a sodium–lead alloy: [11] [12] 4 NaPb + 4 CH 3 CH 2 Cl → Pb(CH 3 CH 2 ) 4 + 4 NaCl + 3 Pb Reductive dechlorination is rarely useful in chemical synthesis, but is a key step in the biodegradation of several organochlorine persistent pollutants .
Here ethyl chloride reacts with potassium hydroxide, typically in a solvent such as ethanol, giving ethylene. Likewise, 1-chloropropane and 2-chloropropane give propene . Zaitsev's rule helps to predict regioselectivity for this reaction type.
The table is sortable by each of the following refrigerant properties (scroll right or reduce magnification to view more properties): Type/prefix (see legends); ASHRAE number