When.com Web Search

  1. Ad

    related to: fourier transform of impulse function

Search results

  1. Results From The WOW.Com Content Network
  2. Dirac delta function - Wikipedia

    en.wikipedia.org/wiki/Dirac_delta_function

    The impulse response can be computed to any desired degree of accuracy by choosing a suitable approximation for δ, and once it is known, it characterizes the system completely. See LTI system theory § Impulse response and convolution. The inverse Fourier transform of the tempered distribution f(ξ) = 1 is the delta function.

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The sinc function, which is the Fourier transform of the rectangular function, is bounded and continuous, but not Lebesgue integrable. The Fourier transform may be defined in some cases for non-integrable functions, but the Fourier transforms of integrable functions have several strong properties.

  4. Dirac comb - Wikipedia

    en.wikipedia.org/wiki/Dirac_comb

    The graph of the Dirac comb function is an infinite series of Dirac delta functions spaced at intervals of T. In mathematics, a Dirac comb (also known as sha function, impulse train or sampling function) is a periodic function with the formula ⁡ := = for some given period . [1]

  5. Discrete Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete_Fourier_transform

    In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced samples of a function into a same-length sequence of equally-spaced samples of the discrete-time Fourier transform (DTFT), which is a complex-valued function of frequency. The interval at which the DTFT is sampled is the reciprocal of the duration ...

  6. Impulse response - Wikipedia

    en.wikipedia.org/wiki/Impulse_response

    The impulse response of a linear transformation is the image of Dirac's delta function under the transformation, analogous to the fundamental solution of a partial differential operator. It is usually easier to analyze systems using transfer functions as opposed to impulse responses. The transfer function is the Laplace transform of the impulse ...

  7. Dirichlet kernel - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_kernel

    The convolution of D n (x) with any function f of period 2 π is the nth-degree Fourier series approximation to f, i.e., we have () = () = = ^ (), where ^ = is the k th Fourier coefficient of f. This implies that in order to study convergence of Fourier series it is enough to study properties of the Dirichlet kernel.

  8. Rectangular function - Wikipedia

    en.wikipedia.org/wiki/Rectangular_function

    Plot of normalized ⁡ function (i.e. ⁡ ()) with its spectral frequency components.. The unitary Fourier transforms of the rectangular function are [2] ⁡ = ⁡ = ⁡ (), using ordinary frequency f, where is the normalized form [10] of the sinc function and ⁡ = ⁡ (/) / = ⁡ (/), using angular frequency , where is the unnormalized form of the sinc function.

  9. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/.../Discrete-time_Fourier_transform

    The lower right corner depicts samples of the DTFT that are computed by a discrete Fourier transform (DFT). The utility of the DTFT is rooted in the Poisson summation formula, which tells us that the periodic function represented by the Fourier series is a periodic summation of the continuous Fourier transform: [b]