Ad
related to: calculation for miles per hour 2 to ft s 2 to m s 2 to newtons
Search results
Results From The WOW.Com Content Network
metre per second squared (SI unit) m/s 2: ≡ 1 m/s 2 = 1 m/s 2: mile per hour per second: mph/s ≡ 1 mi/(h⋅s) = 4.4704 × 10 −1 m/s 2: mile per minute per second: mpm/s ≡ 1 mi/(min⋅s) = 26.8224 m/s 2: mile per second squared: mps 2: ≡ 1 mi/s 2 = 1.609 344 × 10 3 m/s 2: standard gravity: g 0: ≡ 9.806 65 m/s 2 = 9.806 65 m/s 2
The agreed-upon value for standard gravity is 9.80665 m/s 2 (32.1740 ft/s 2) by definition. [4] This quantity is denoted variously as g n, g e (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s 2 (32.087686258 ft/s 2)), [5] g 0, or simply g (which is also used for the variable local value).
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.
For example, 10 miles per hour can be converted to metres per second by using a sequence of conversion factors as shown below: = . Each conversion factor is chosen based on the relationship between one of the original units and one of the desired units (or some intermediary unit), before being rearranged to create a factor that cancels out the ...
Near the surface of the Earth, the acceleration due to gravity g = 9.807 m/s 2 (metres per second squared, which might be thought of as "metres per second, per second"; or 32.18 ft/s 2 as "feet per second per second") approximately. A coherent set of units for g, d, t and v is essential.
The expression "1 g = 9.806 65 m/s 2 " means that for every second that elapses, velocity changes 9.806 65 metres per second (35.303 94 km/h). This rate of change in velocity can also be denoted as 9.806 65 (metres per second) per second, or 9.806 65 m/s 2.
Its symbol is written in several forms as m/s 2, m·s −2 or ms −2, , or less commonly, as (m/s)/s. [ 1 ] As acceleration, the unit is interpreted physically as change in velocity or speed per time interval, i.e. metre per second per second and is treated as a vector quantity.
According to Newton's law of universal gravitation, the magnitude of the attractive force (F) between two bodies each with a spherically symmetric density distribution is directly proportional to the product of their masses, m 1 and m 2, and inversely proportional to the square of the distance, r, directed along the line connecting their centres of mass: =.