Search results
Results From The WOW.Com Content Network
In plane geometry, a lune (from Latin luna 'moon') is the concave-convex region bounded by two circular arcs. [1] It has one boundary portion for which the connecting segment of any two nearby points moves outside the region and another boundary portion for which the connecting segment of any two nearby points lies entirely inside the region.
Mrs. Miniver's problem is a geometry problem about the area of circles. It asks how to place two circles and of given radii in such a way that the lens formed by intersecting their two interiors has equal area to the symmetric difference of and (the area contained in one but not both circles). [1]
This special line is the radical line of the two circles. Intersection of two circles with centers on the x-axis, their radical line is dark red. Special case = = = : In this case the origin is the center of the first circle and the second center lies on the x-axis (s. diagram).
The vesica piscis is the intersection of two congruent disks, each centered on the perimeter of the other. The vesica piscis is a type of lens, a mathematical shape formed by the intersection of two disks with the same radius, intersecting in such a way that the center of each disk lies on the perimeter of the other. [1]
The tangent lines must be equal in length for any point on the radical axis: | | = | |. If P, T 1, T 2 lie on a common tangent, then P is the midpoint of ¯.. In Euclidean geometry, the radical axis of two non-concentric circles is the set of points whose power with respect to the circles are equal.
The two great circles are shown as thin black lines, whereas the spherical lune (shown in green) is outlined in thick black lines. This geometry also defines lunes of greater angles: {2} π-θ, and {2} 2π-θ. In spherical geometry, a spherical lune (or biangle) is an area on a sphere bounded by two half great circles which meet at antipodal ...
The value of the two products in the chord theorem depends only on the distance of the intersection point S from the circle's center and is called the absolute value of the power of S; more precisely, it can be stated that: | | | | = | | | | = where r is the radius of the circle, and d is the distance between the center of the circle and the ...
Two circles are also called Villarceau circles as a plane intersection of a torus. The areas inside one circle and outside the other circle is called a lune. The 3-circle figure resembles a depiction of Borromean rings and is used in 3-set theory Venn diagrams. Its interior makes a unicursal path called a triquetra.