Search results
Results From The WOW.Com Content Network
The use of acidosis for a low pH creates an ambiguity in its meaning. The difference is important where a patient has factors causing both acidosis and alkalosis, wherein the relative severity of both determines whether the result is a high, low, or normal pH. [citation needed] Alkalemia occurs at a pH over 7.45.
The pH of the extracellular fluid, including the blood plasma, is normally tightly regulated between 7.32 and 7.42 by the chemical buffers, the respiratory system, and the renal system. [ 13 ] [ 16 ] [ 17 ] [ 18 ] [ 1 ] The normal pH in the fetus differs from that in the adult.
The pH i plays a critical role in membrane transport and other intracellular processes. In an environment with the improper pH i, biological cells may have compromised function. [1] [2] Therefore, pH i is closely regulated in order to ensure proper cellular function, controlled cell growth, and normal cellular processes. [3]
The tears are unique among body fluids in that they are exposed to the environment. Much like other body fluids, tear fluid is kept in a tight pH range using the bicarbonate buffer system. [15] The pH of tears shift throughout a waking day, rising "about 0.013 pH units/hour" until a prolonged closed-eye period causes the pH to fall again. [15]
Respiratory alkalosis is a medical condition in which increased respiration elevates the blood pH beyond the normal range (7.35–7.45) with a concurrent reduction in arterial levels of carbon dioxide.
Digestion is a complex process controlled by several factors. pH plays a crucial role in a normally functioning digestive tract. In the mouth, pharynx and esophagus, pH is typically about 6.8, very weakly acidic. Saliva controls pH in this region of the digestive tract.
The pH range is commonly given as zero to 14, but a pH value can be less than 0 for very concentrated strong acids or greater than 14 for very concentrated strong bases. [2] The pH scale is traceable to a set of standard solutions whose pH is established by international agreement. [3]
The isoelectric point (pI, pH(I), IEP), is the pH at which a molecule carries no net electrical charge or is electrically neutral in the statistical mean. The standard nomenclature to represent the isoelectric point is pH(I). [1] However, pI is also used. [2] For brevity, this article uses pI.