When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Alpha decay - Wikipedia

    en.wikipedia.org/wiki/Alpha_decay

    Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or "decays" into a different atomic nucleus, with a mass number that is reduced by four and an atomic number that is reduced by two.

  3. Fissile material - Wikipedia

    en.wikipedia.org/wiki/Fissile_material

    To be a useful fuel for nuclear fission chain reactions, the material must: Be in the region of the binding energy curve where a fission chain reaction is possible (i.e., above radium) Have a high probability of fission on neutron capture; Release more than one neutron on average per neutron capture.

  4. Nuclear reactor physics - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reactor_physics

    The mere fact that an assembly is supercritical does not guarantee that it contains any free neutrons at all. At least one neutron is required to "strike" a chain reaction, and if the spontaneous fission rate is sufficiently low it may take a long time (in 235 U reactors, as long as many minutes) before a chance neutron encounter starts a chain reaction even if the reactor is supercritical.

  5. Neutron activation - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation

    Aluminium can capture a neutron and generate radioactive sodium-24, which has a half life of 15 hours [9] [10] and a beta decay energy of 5.514 MeV. [11] The activation of a number of test target elements such as sulfur, copper, tantalum, and gold have been used to determine the yield of both pure fission [12] [13] and thermonuclear weapons. [14]

  6. Direct energy conversion - Wikipedia

    en.wikipedia.org/wiki/Direct_energy_conversion

    The first experiments used beams of positives and negatives as fuel, and demonstrated energy capture at a peak efficiency of 65 percent and a minimum efficiency of 50 percent. [7] [8] The following experiments involved a true plasma direct converter that was tested on the Tandem Mirror Experiment (TMX), an operating magnetic mirror fusion reactor.

  7. Beta decay - Wikipedia

    en.wikipedia.org/wiki/Beta_decay

    The two types of beta decay are known as beta minus and beta plus.In beta minus (β −) decay, a neutron is converted to a proton, and the process creates an electron and an electron antineutrino; while in beta plus (β +) decay, a proton is converted to a neutron and the process creates a positron and an electron neutrino. β + decay is also known as positron emission.

  8. Isotopes of uranium - Wikipedia

    en.wikipedia.org/wiki/Isotopes_of_uranium

    Its (fission) nuclear cross section for slow thermal neutron is about 504.81 barns. For fast neutrons it is on the order of 1 barn. At thermal energy levels, about 5 of 6 neutron absorptions result in fission and 1 of 6 result in neutron capture forming uranium-236. [31] The fission-to-capture ratio improves for faster neutrons.

  9. Nuclear criticality safety - Wikipedia

    en.wikipedia.org/wiki/Nuclear_criticality_safety

    Concentration/Density: Neutron reactions leading to scattering, capture or fission reactions are more likely to occur in dense materials; conversely, neutrons are more likely to escape (leak) from low density materials. Moderation: Neutrons resulting from fission are typically fast (high energy). These fast neutrons do not cause fission as ...