When.com Web Search

  1. Ad

    related to: the probability table calculator with solution

Search results

  1. Results From The WOW.Com Content Network
  2. Birthday problem - Wikipedia

    en.wikipedia.org/wiki/Birthday_problem

    Comparing p(n) = probability of a birthday match with q(n) = probability of matching your birthday. In the birthday problem, neither of the two people is chosen in advance. By contrast, the probability q(n) that at least one other person in a room of n other people has the same birthday as a particular person (for example, you) is given by

  3. Conditional probability table - Wikipedia

    en.wikipedia.org/wiki/Conditional_probability_table

    The first column sum is the probability that x =0 and y equals any of the values it can have – that is, the column sum 6/9 is the marginal probability that x=0. If we want to find the probability that y=0 given that x=0, we compute the fraction of the probabilities in the x=0 column that have the value y=0, which is 4/9 ÷

  4. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    Thus, we can calculate the exact probability of any arrangement of the 24 teenagers into the four cells of the table, but Fisher showed that to generate a significance level, we need consider only the cases where the marginal totals are the same as in the observed table, and among those, only the cases where the arrangement is as extreme as the ...

  5. Standard normal table - Wikipedia

    en.wikipedia.org/wiki/Standard_normal_table

    Z tables use at least three different conventions: Cumulative from mean gives a probability that a statistic is between 0 (mean) and Z. Example: Prob(0 ≤ Z ≤ 0.69) = 0.2549. Cumulative gives a probability that a statistic is less than Z. This equates to the area of the distribution below Z. Example: Prob(Z ≤ 0.69) = 0.7549.

  6. Buffon's needle problem - Wikipedia

    en.wikipedia.org/wiki/Buffon's_needle_problem

    We can calculate the probability P as the product of two probabilities: P = P 1 · P 2, where P 1 is the probability that the center of the needle falls close enough to a line for the needle to possibly cross it, and P 2 is the probability that the needle actually crosses the line, given that the center is within reach.

  7. Pearson distribution - Wikipedia

    en.wikipedia.org/wiki/Pearson_distribution

    A Pearson density p is defined to be any valid solution to the differential equation (cf. Pearson 1895, p. 381) ′ () + + + + = ()with: =, = = +, =. According to Ord, [3] Pearson devised the underlying form of Equation (1) on the basis of, firstly, the formula for the derivative of the logarithm of the density function of the normal distribution (which gives a linear function) and, secondly ...

  8. Monty Hall problem - Wikipedia

    en.wikipedia.org/wiki/Monty_Hall_problem

    Many probability text books and articles in the field of probability theory derive the conditional probability solution through a formal application of Bayes' theorem; among them books by Gill [51] and Henze. [52] Use of the odds form of Bayes' theorem, often called Bayes' rule, makes such a derivation more transparent. [34] [53]

  9. Coupon collector's problem - Wikipedia

    en.wikipedia.org/wiki/Coupon_collector's_problem

    In probability theory, the coupon collector's problem refers to mathematical analysis of "collect all coupons and win" contests. It asks the following question: if each box of a given product (e.g., breakfast cereals) contains a coupon, and there are n different types of coupons, what is the probability that more than t boxes need to be bought ...