Ad
related to: ll congruence theorem
Search results
Results From The WOW.Com Content Network
The congruence theorems side-angle-side (SAS) and side-side-side (SSS) also hold on a sphere; in addition, if two spherical triangles have an identical angle-angle-angle (AAA) sequence, they are congruent (unlike for plane triangles). [9] The plane-triangle congruence theorem angle-angle-side (AAS) does not hold for spherical triangles. [10]
Linear congruence theorem (number theory, modular arithmetic) Linear speedup theorem (computational complexity theory) Linnik's theorem (number theory) Lions–Lax–Milgram theorem (partial differential equations) Liouville's theorem (complex analysis, entire functions) Liouville's theorem (conformal mappings) Liouville's theorem (Hamiltonian ...
In mathematics, specifically abstract algebra, the isomorphism theorems (also known as Noether's isomorphism theorems) are theorems that describe the relationship among quotients, homomorphisms, and subobjects. Versions of the theorems exist for groups, rings, vector spaces, modules, Lie algebras, and other algebraic structures.
Congruence, two binary relations, one linking line segments and one linking angles, each denoted by an infix ≅. Line segments, angles, and triangles may each be defined in terms of points and straight lines, using the relations of betweenness and containment.
This page was last edited on 7 September 2014, at 03:27 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
Clement's congruence-based theorem characterizes the twin primes pairs of the form (, +) through the following conditions: [()! +] ((+)), +P. A. Clement's original 1949 paper [2] provides a proof of this interesting elementary number theoretic criteria for twin primality based on Wilson's theorem.
In mathematics, an isometry (or congruence, or congruent transformation) is a distance-preserving transformation between metric spaces, usually assumed to be bijective. [ a ] The word isometry is derived from the Ancient Greek : ἴσος isos meaning "equal", and μέτρον metron meaning "measure".
For instance, Reflexivity and Transitivity of Congruence establish that congruence is an equivalence relation over line segments. The Identity of Congruence and of Betweenness govern the trivial case when those relations are applied to nondistinct points. The theorem xy≡zz ↔ x=y ↔ Bxyx extends these Identity axioms.