Search results
Results From The WOW.Com Content Network
Water is far more prevalent in the outer Solar System, beyond a point called the frost line, where the Sun's radiation is too weak to vaporize solid and liquid water (as well as other elements and chemical compounds with relatively low melting points, such as methane and ammonia). In the inner Solar System, planets, asteroids, and moons formed ...
Pressure dependence of water melting point. For a solid to melt, heat is required to raise its temperature to the melting point. However, further heat needs to be supplied for the melting to take place: this is called the heat of fusion, and is an example of latent heat. [10]
Up to 99.63 °C (the boiling point of water at 0.1 MPa), at this pressure water exists as a liquid. Above that, it exists as water vapor. Note that the boiling point of 100.0 °C is at a pressure of 0.101325 MPa (1 atm), which is the average atmospheric pressure.
This is the reason why the melting and boiling points of water are much higher than those of other analogous compounds like hydrogen sulfide. They also explain its exceptionally high specific heat capacity (about 4.2 J /(g·K)), heat of fusion (about 333 J/g), heat of vaporization ( 2257 J/g ), and thermal conductivity (between 0.561 and 0.679 ...
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 ... Water: 100.00 0.512 0.00 –1.86 K b & K f [2] Ethyl ...
Simply put: Salt lowers the freezing point of water. But there’s plenty more to it than that, so we consulted the experts. ... and “more salt leads to a greater depression of the melting point
For pure elements or compounds, e.g. pure copper, pure water, etc. the liquidus and solidus are at the same temperature, and the term melting point may be used. There are also some mixtures which melt at a particular temperature, known as congruent melting. One example is eutectic mixture. In a eutectic system, there is particular mixing ratio ...
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.