When.com Web Search

  1. Ad

    related to: log to exponential form formula example with steps

Search results

  1. Results From The WOW.Com Content Network
  2. List of logarithmic identities - Wikipedia

    en.wikipedia.org/wiki/List_of_logarithmic_identities

    The complex logarithm is the complex number analogue of the logarithm function. No single valued function on the complex plane can satisfy the normal rules for logarithms. However, a multivalued function can be defined which satisfies most of the identities. It is usual to consider this as a function defined on a Riemann surface.

  3. Natural logarithm - Wikipedia

    en.wikipedia.org/wiki/Natural_logarithm

    The exponential function can be extended to a function which gives a complex number as e z for any arbitrary complex number z; simply use the infinite series with x =z complex. This exponential function can be inverted to form a complex logarithm that exhibits most of the properties of the ordinary logarithm.

  4. Logarithm - Wikipedia

    en.wikipedia.org/wiki/Logarithm

    However, in general settings, the logarithm tends to be a multi-valued function. For example, the complex logarithm is the multi-valued inverse of the complex exponential function. Similarly, the discrete logarithm is the multi-valued inverse of the exponential function in finite groups; it has uses in public-key cryptography.

  5. Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Euler's_formula

    This complex exponential function is sometimes denoted cis x ("cosine plus i sine"). The formula is still valid if x is a complex number, and is also called Euler's formula in this more general case. [1] Euler's formula is ubiquitous in mathematics, physics, chemistry, and engineering.

  6. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    The definition of e x as the exponential function allows defining b x for every positive real numbers b, in terms of exponential and logarithm function. Specifically, the fact that the natural logarithm ln(x) is the inverse of the exponential function e x means that one has = ⁡ (⁡) = ⁡ for every b > 0.

  7. Lambert W function - Wikipedia

    en.wikipedia.org/wiki/Lambert_W_function

    The product logarithm Lambert W function plotted in the complex plane from −2 − 2i to 2 + 2i The graph of y = W(x) for real x < 6 and y > −4. The upper branch (blue) with y ≥ −1 is the graph of the function W 0 (principal branch), the lower branch (magenta) with y ≤ −1 is the graph of the function W −1. The minimum value of x is ...

  8. Elementary function - Wikipedia

    en.wikipedia.org/wiki/Elementary_function

    In mathematics, an elementary function is a function of a single variable (typically real or complex) that is defined as taking sums, products, roots and compositions of finitely many polynomial, rational, trigonometric, hyperbolic, and exponential functions, and their inverses (e.g., arcsin, log, or x 1/n).

  9. Four exponentials conjecture - Wikipedia

    en.wikipedia.org/wiki/Four_exponentials_conjecture

    In its logarithmic form it is the following conjecture. Let λ 1, λ 2, and λ 3 be any three logarithms of algebraic numbers and γ be a non-zero algebraic number, and suppose that λ 1 λ 2 = γλ 3. Then λ 1 λ 2 = γλ 3 = 0. The exponential form of this conjecture is the following.