When.com Web Search

  1. Ad

    related to: maximum value of a function calculator

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    As an example, both unnormalised and normalised sinc functions above have of {0} because both attain their global maximum value of 1 at x = 0. The unnormalised sinc function (red) has arg min of {−4.49, 4.49}, approximately, because it has 2 global minimum values of approximately −0.217 at x = ±4.49.

  3. Golden-section search - Wikipedia

    en.wikipedia.org/wiki/Golden-section_search

    Specify the function to be minimized, ⁠ ⁠, the interval to be searched as {X 1,X 4}, and their functional values F 1 and F 4. Calculate an interior point and its functional value F 2. The two interval lengths are in the ratio c : r or r : c where r = φ − 1; and c = 1 − r, with φ being the golden ratio.

  4. Extreme value theorem - Wikipedia

    en.wikipedia.org/wiki/Extreme_value_theorem

    The extreme value theorem was originally proven by Bernard Bolzano in the 1830s in a work Function Theory but the work remained unpublished until 1930. Bolzano's proof consisted of showing that a continuous function on a closed interval was bounded, and then showing that the function attained a maximum and a minimum value.

  5. Arg max - Wikipedia

    en.wikipedia.org/wiki/Arg_max

    As an example, both unnormalised and normalised sinc functions above have of {0} because both attain their global maximum value of 1 at x = 0. The unnormalised sinc function (red) has arg min of {−4.49, 4.49}, approximately, because it has 2 global minimum values of approximately −0.217 at x = ±4.49.

  6. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    The extreme value theorem of Karl Weierstrass states that a continuous real-valued function on a compact set attains its maximum and minimum value. More generally, a lower semi-continuous function on a compact set attains its minimum; an upper semi-continuous function on a compact set attains its maximum point or view.

  7. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    For maximum likelihood estimation, the existence of a global maximum of the likelihood function is of the utmost importance. By the extreme value theorem, it suffices that the likelihood function is continuous on a compact parameter space for the maximum likelihood estimator to exist. [7]

  8. Approximation theory - Wikipedia

    en.wikipedia.org/wiki/Approximation_theory

    The objective is to make the approximation as close as possible to the actual function, typically with an accuracy close to that of the underlying computer's floating point arithmetic. This is accomplished by using a polynomial of high degree, and/or narrowing the domain over which the polynomial has to approximate the function. Narrowing the ...

  9. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    The value of the function at a critical point is a critical value. [1] More specifically, when dealing with functions of a real variable, a critical point, also known as a stationary point, is a point in the domain of the function where the function derivative is equal to zero (or where the function is not differentiable). [2]