Search results
Results From The WOW.Com Content Network
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
(For example, a node can be split into child nodes based upon the subsets of the population whose ages are less than 50, between 50 and 100, and greater than 100.) The algorithm continues to recurse on each subset, considering only attributes never selected before. Recursion on a subset may stop in one of these cases:
In number theory and computer science, the partition problem, or number partitioning, [1] is the task of deciding whether a given multiset S of positive integers can be partitioned into two subsets S 1 and S 2 such that the sum of the numbers in S 1 equals the sum of the numbers in S 2.
Hopcroft's algorithm maintains a partition of the states of the input automaton into subsets, with the property that any two states in different subsets must be mapped to different states of the output automaton. Initially, there are two subsets, one containing all the accepting states of the automaton and one containing the remaining states.
In 3-Partition the goal is to partition S into m = n/3 subsets, not just a fixed number of subsets, with equal sum. Partition is "easier" than 3-Partition: while 3-Partition is strongly NP-hard , Partition is only weakly NP-hard - it is hard only when the numbers are encoded in non-unary system, and have value exponential in n .
In computer science, multiway number partitioning is the problem of partitioning a multiset of numbers into a fixed number of subsets, such that the sums of the subsets are as similar as possible. It was first presented by Ronald Graham in 1969 in the context of the identical-machines scheduling problem.
In functional and list-based languages a string is represented as a list (of character codes), therefore all list-manipulation procedures could be considered string functions. However such languages may implement a subset of explicit string-specific functions as well.
For example, one can add N numbers either by a simple loop that adds each datum to a single variable, or by a D&C algorithm called pairwise summation that breaks the data set into two halves, recursively computes the sum of each half, and then adds the two sums. While the second method performs the same number of additions as the first and pays ...