When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shockley–Queisser limit - Wikipedia

    en.wikipedia.org/wiki/ShockleyQueisser_limit

    The sunlight intensity is a parameter in the ShockleyQueisser calculation, and with more concentration, the theoretical efficiency limit increases somewhat. If, however, the intense light heats up the cell, which often occurs in practice, the theoretical efficiency limit may go down all things considered.

  3. Thermodynamic efficiency limit - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_efficiency_limit

    The Shockley-Queisser limit for the efficiency of a single-junction solar cell under unconcentrated sunlight. This calculated curve uses actual solar spectrum data, and therefore the curve is wiggly from IR absorption bands in the atmosphere. This efficiency limit of about 34% can be exceeded by multijunction solar cells.

  4. Talk:Shockley–Queisser limit - Wikipedia

    en.wikipedia.org/wiki/Talk:ShockleyQueisser_limit

    The numbers are normally not similar as you suggest. But in any case, f c cannot be more than 1, and the upper limit (the Shockley-Queisser limit) requires taking f c = 1. Eric Kvaalen 19:05, 6 September 2016 (UTC) Yes, virtually all above-gap photons come from recombination, but not all recombinations create above-bandgap photons.

  5. Multiple exciton generation - Wikipedia

    en.wikipedia.org/wiki/Multiple_exciton_generation

    Breakdown of the causes for the Shockley-Queisser limit. The black height is Shockley-Queisser limit for the maximum energy that can be extracted as useful electrical power in a conventional solar cell. However, a multiple-exciton-generation solar cell can also use some of the energy in the green area (and to a lesser extent the blue area ...

  6. Solar-cell efficiency - Wikipedia

    en.wikipedia.org/wiki/Solar-cell_efficiency

    The ShockleyQueisser limit for the efficiency of a single-junction solar cell under unconcentrated sunlight at 273 K. This calculated curve uses actual solar spectrum data, and therefore the curve is wiggly from IR absorption bands in the atmosphere. This efficiency limit of ~34% can be exceeded by multijunction solar cells.

  7. Intermediate band photovoltaics - Wikipedia

    en.wikipedia.org/wiki/Intermediate_band...

    Intermediate band photovoltaics in solar cell research provides methods for exceeding the ShockleyQueisser limit on the efficiency of a cell. It introduces an intermediate band (IB) energy level in between the valence and conduction bands.

  8. Third-generation photovoltaic cell - Wikipedia

    en.wikipedia.org/wiki/Third-generation...

    Third-generation photovoltaic cells are solar cells that are potentially able to overcome the ShockleyQueisser limit of 31–41% power efficiency for single bandgap solar cells. This includes a range of alternatives to cells made of semiconducting p-n junctions ("first generation") and thin film cells ("second generation").

  9. Quantum dot solar cell - Wikipedia

    en.wikipedia.org/wiki/Quantum_dot_solar_cell

    The band gap (1.34 eV) of an ideal single-junction cell is close to that of silicon (1.1 eV), one of the many reasons that silicon dominates the market. However, silicon's efficiency is limited to about 30% (ShockleyQueisser limit). It is possible to improve on a single-junction cell by vertically stacking cells with different bandgaps ...