When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Non-negative matrix factorization - Wikipedia

    en.wikipedia.org/wiki/Non-negative_matrix...

    For example, if V is an m × n matrix, W is an m × p matrix, and H is a p × n matrix then p can be significantly less than both m and n. Here is an example based on a text-mining application: Let the input matrix (the matrix to be factored) be V with 10000 rows and 500 columns where words are in rows and documents are in columns. That is, we ...

  3. Matrix regularization - Wikipedia

    en.wikipedia.org/wiki/Matrix_regularization

    For example, the , norm is used in multi-task learning to group features across tasks, such that all the elements in a given row of the coefficient matrix can be forced to zero as a group. [6] The grouping effect is achieved by taking the ℓ 2 {\displaystyle \ell ^{2}} -norm of each row, and then taking the total penalty to be the sum of these ...

  4. Computational complexity of matrix multiplication - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    In theoretical computer science, the computational complexity of matrix multiplication dictates how quickly the operation of matrix multiplication can be performed. Matrix multiplication algorithms are a central subroutine in theoretical and numerical algorithms for numerical linear algebra and optimization, so finding the fastest algorithm for matrix multiplication is of major practical ...

  5. Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Strassen_algorithm

    This reduces the number of matrix additions and subtractions from 18 to 15. The number of matrix multiplications is still 7, and the asymptotic complexity is the same. [6] The algorithm was further optimised in 2017, [7] reducing the number of matrix additions per step to 12 while maintaining the number of matrix multiplications, and again in ...

  6. MATLAB - Wikipedia

    en.wikipedia.org/wiki/MATLAB

    MATLAB (an abbreviation of "MATrix LABoratory" [18]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks. MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms , creation of user interfaces , and interfacing with programs written in other languages.

  7. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Similarly, the singular values of any ⁠ ⁠ matrix can be viewed as the magnitude of the semiaxis of an ⁠ ⁠-dimensional ellipsoid in ⁠ ⁠-dimensional space, for example as an ellipse in a (tilted) 2D plane in a 3D space. Singular values encode magnitude of the semiaxis, while singular vectors encode direction.

  8. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    For example, if A is a 3-by-0 matrix and B is a 0-by-3 matrix, then AB is the 3-by-3 zero matrix corresponding to the null map from a 3-dimensional space V to itself, while BA is a 0-by-0 matrix. There is no common notation for empty matrices, but most computer algebra systems allow creating and computing with them.

  9. Multi-task learning - Wikipedia

    en.wikipedia.org/wiki/Multi-task_learning

    Multi-task learning (MTL) is a subfield of machine learning in which multiple learning tasks are solved at the same time, while exploiting commonalities and differences across tasks. This can result in improved learning efficiency and prediction accuracy for the task-specific models, when compared to training the models separately.