Search results
Results From The WOW.Com Content Network
The percentage of W mech is a function of pV and p surr, and approaches 100% as p surr approaches zero. To pursue the nature of isothermal expansion further, note the red line on Figure 3. The fixed value of pV causes an exponential increase in piston rise vs. pressure decrease. For example, a pressure decrease from 2 to 1.9 atm causes a piston ...
The Carnot cycle is a cycle composed of the totally reversible processes of isentropic compression and expansion and isothermal heat addition and rejection. The thermal efficiency of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:
In paper, [9] the authors proposed a different thermal expansion equation of state, which consists of isothermal compression at room temperature, following by thermal expansion at high pressure. To distinguish these two thermal expansion equations of state, the latter one is called pressure-dependent thermal expansion equation of state.
In this particular example, processes 1 and 3 are isothermal, whereas processes 2 and 4 are isochoric. The PV diagram is a particularly useful visualization of a quasi-static process, because the area under the curve of a process is the amount of work done by the system during that process.
Isotherms of an ideal gas for different temperatures. The curved lines are rectangular hyperbolae of the form y = a/x. They represent the relationship between pressure (on the vertical axis) and volume (on the horizontal axis) for an ideal gas at different temperatures: lines that are farther away from the origin (that is, lines that are nearer to the top right-hand corner of the diagram ...
A PV diagram plots the change in pressure P with respect to volume V for some process or processes. Typically in thermodynamics, the set of processes forms a cycle, so that upon completion of the cycle there has been no net change in state of the system; i.e. the device returns to the starting pressure and volume.
The main feature of thermodynamic diagrams is the equivalence between the area in the diagram and energy. When air changes pressure and temperature during a process and prescribes a closed curve within the diagram the area enclosed by this curve is proportional to the energy which has been gained or released by the air.
Reversible isothermal expansion of the gas at the "hot" temperature, T H (isothermal heat addition or absorption). During this step (A to B) the gas is allowed to expand and it does work on the surroundings. The temperature of the gas (the system) does not change during the process, and thus the expansion is isothermic.