Ads
related to: difference between sieve and sifter
Search results
Results From The WOW.Com Content Network
Metal laboratory sieves An ami shakushi, a Japanese ladle or scoop that may be used to remove small drops of batter during the frying of tempura ancient sieve. A sieve, fine mesh strainer, or sift, is a tool used for separating wanted elements from unwanted material or for controlling the particle size distribution of a sample, using a screen such as a woven mesh or net or perforated sheet ...
A sieve analysis (or gradation test) is a practice or procedure used in geology, civil engineering, [1] and chemical engineering [2] to assess the particle size distribution (also called gradation) of a granular material by allowing the material to pass through a series of sieves of progressively smaller mesh size and weighing the amount of material that is stopped by each sieve as a fraction ...
Although such information contains long lists of sieve sizes, in practice sieves are normally used in series in which each member sieve is selected to pass particles approximately 1/ √ 2 smaller in diameter or 1/2 smaller in cross-sectional area than the previous sieve. For example the series 80mm, 63, 40, 31.5, 20, 16, 14, 10, 8, 6.3, 4, 2.8 ...
An alternative to the high frequency vibrating screens is the rotary sifter. A rotary sifter uses a screen which rotates in a circular motion and the finer particles are sifted through the apertures. It is also generally used for finer separations; between 12mm to 45μm particle size.
PSD is usually defined by the method by which it is determined. The most easily understood method of determination is sieve analysis, where powder is separated on sieves of different sizes. Thus, the PSD is defined in terms of discrete size ranges: e.g. "% of sample between 45 μm and 53 μm", when sieves of these sizes are used.
The techniques of sieve theory can be quite powerful, but they seem to be limited by an obstacle known as the parity problem, which roughly speaking asserts that sieve theory methods have extreme difficulty distinguishing between numbers with an odd number of prime factors and numbers with an even number of prime factors. This parity problem is ...