Search results
Results From The WOW.Com Content Network
Then, zero crossings are detected in the filtered result to obtain the edges. The Laplacian-of-Gaussian image operator is sometimes also referred to as the Mexican hat wavelet due to its visual shape when turned upside-down. David Marr and Ellen C. Hildreth are two of the inventors. [2]
A drawing of the Heawood graph with three crossings. This is the minimum number of crossings among all drawings of this graph, so the graph has crossing number cr(G) = 3.. In graph theory, the crossing number cr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G.
Thus we can find a graph with at least e − cr(G) edges and n vertices with no crossings, and is thus a planar graph. But from Euler's formula we must then have e − cr(G) ≤ 3n, and the claim follows. (In fact we have e − cr(G) ≤ 3n − 6 for n ≥ 3). To obtain the actual crossing number inequality, we now use a probabilistic argument.
Find a topological ordering of the given DAG. For each vertex v of the DAG, in the topological ordering, compute the length of the longest path ending at v by looking at its incoming neighbors and adding one to the maximum length recorded for those neighbors. If v has no incoming neighbors, set the length of the longest path ending at v to zero ...
A zero-crossing is a point where the sign of a mathematical function changes (e.g. from positive to negative), represented by an intercept of the axis (zero value) in the graph of the function. It is a commonly used term in electronics, mathematics, acoustics , and image processing .
Thus, in the ideal continuous case, detection of zero-crossings in the second derivative captures local maxima in the gradient. The early Marr–Hildreth operator is based on the detection of zero-crossings of the Laplacian operator applied to a Gaussian-smoothed image. It can be shown, however, that this operator will also return false edges ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A variational explanation for the main ingredient of the Canny edge detector, that is, finding the zero crossings of the 2nd derivative along the gradient direction, was shown to be the result of minimizing a Kronrod–Minkowski functional while maximizing the integral over the alignment of the edge with the gradient field (Kimmel and ...