Search results
Results From The WOW.Com Content Network
An example of a cycle of idealized thermodynamic processes which make up the Stirling cycle. A quasi-static thermodynamic process can be visualized by graphically plotting the path of idealized changes to the system's state variables. In the example, a cycle consisting of four quasi-static processes is shown.
An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work.
For more accurate information, the height of the highest point, or the max pressure, to surpass the static friction would be proportional to the frictional coefficient and the slope going back down to the normal pressure would be the same as an isothermal process if the temperature was increased at a slow enough rate. [4]
An isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium).
The Carnot cycle is a cycle composed of the totally reversible processes of isentropic compression and expansion and isothermal heat addition and rejection. The thermal efficiency of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:
In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.
Process 3–4 is an adiabatic (isentropic) expansion (power stroke). Process 4–1 completes the cycle by a constant-volume process in which heat is rejected from the air while the piston is at bottom dead center. Process 1–0 the mass of air is released to the atmosphere in a constant pressure process.
The dependence of work on the path of the thermodynamic process is also unrelated to reversibility, since expansion work, which can be visualized on a pressure–volume diagram as the area beneath the equilibrium curve, is different for different reversible expansion processes (e.g. adiabatic, then isothermal; vs. isothermal, then adiabatic ...