When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    Finding global maxima and minima is the goal of mathematical optimization. If a function is continuous on a closed interval, then by the extreme value theorem, global maxima and minima exist. Furthermore, a global maximum (or minimum) either must be a local maximum (or minimum) in the interior of the domain, or must lie on the boundary of the ...

  3. Local property - Wikipedia

    en.wikipedia.org/wiki/Local_property

    Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [1]

  4. Global optimization - Wikipedia

    en.wikipedia.org/wiki/Global_optimization

    Global optimization is distinguished from local optimization by its focus on finding the minimum or maximum over the given set, as opposed to finding local minima or maxima. Finding an arbitrary local minimum is relatively straightforward by using classical local optimization methods. Finding the global minimum of a function is far more ...

  5. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    In a convex problem, if there is a local minimum that is interior (not on the edge of the set of feasible elements), it is also the global minimum, but a nonconvex problem may have more than one local minimum not all of which need be global minima.

  6. Non-linear least squares - Wikipedia

    en.wikipedia.org/wiki/Non-linear_least_squares

    False minima, also known as local minima, occur when the objective function value is greater than its value at the so-called global minimum. To be certain that the minimum found is the global minimum, the refinement should be started with widely differing initial values of the parameters.

  7. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    When the function is convex, all local minima are also global minima, so in this case gradient descent can converge to the global solution. This process is illustrated in the adjacent picture. Here, F {\displaystyle F} is assumed to be defined on the plane, and that its graph has a bowl shape.

  8. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    Refining this property allows us to test whether a critical point is a local maximum, local minimum, or a saddle point, as follows: If the Hessian is positive-definite at x , {\displaystyle x,} then f {\displaystyle f} attains an isolated local minimum at x . {\displaystyle x.}

  9. Powell's method - Wikipedia

    en.wikipedia.org/wiki/Powell's_method

    Powell's method, strictly Powell's conjugate direction method, is an algorithm proposed by Michael J. D. Powell for finding a local minimum of a function. The function need not be differentiable, and no derivatives are taken. The function must be a real-valued function of a fixed number of real-valued inputs.