Ads
related to: deductive reasoning in geometry examples questions
Search results
Results From The WOW.Com Content Network
The object of thought is deductive reasoning (simple proofs), which the student learns to combine to form a system of formal proofs (Euclidean geometry). Learners can construct geometric proofs at a secondary school level and understand their meaning. They understand the role of undefined terms, definitions, axioms and theorems in
In propositional logic, modus tollens (/ ˈ m oʊ d ə s ˈ t ɒ l ɛ n z /) (MT), also known as modus tollendo tollens (Latin for "mode that by denying denies") [2] and denying the consequent, [3] is a deductive argument form and a rule of inference. Modus tollens is a mixed hypothetical syllogism that takes the form of "If P, then Q. Not Q ...
This theory of deductive reasoning – also known as term logic – was developed by Aristotle, but was superseded by propositional (sentential) logic and predicate logic. [citation needed] Deductive reasoning can be contrasted with inductive reasoning, in regards to validity and soundness. In cases of inductive reasoning, even though the ...
For example, in every logical system capable of expressing the Peano axioms, the Gödel sentence holds for the natural numbers but cannot be proved. Here a logical system is said to be effectively given if it is possible to decide, given any formula in the language of the system, whether the formula is an axiom, and one which can express the ...
One example is the parallel postulate, which is neither provable nor refutable from the remaining axioms of Euclidean geometry. Mathematicians have shown there are many statements that are neither provable nor disprovable in Zermelo–Fraenkel set theory with the axiom of choice (ZFC), the standard system of set theory in mathematics (assuming ...
The Elements begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language. [1]