When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Adiabatic process - Wikipedia

    en.wikipedia.org/wiki/Adiabatic_process

    An adiabatic process (adiabatic from Ancient Greek ἀδιάβατος (adiábatos) 'impassable') is a type of thermodynamic process that occurs without transferring heat or mass between the thermodynamic system and its environment. Unlike an isothermal process, an adiabatic process transfers energy to the surroundings only as work.

  3. Isothermal process - Wikipedia

    en.wikipedia.org/wiki/Isothermal_process

    An isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium).

  4. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    The Carnot cycle is a cycle composed of the totally reversible processes of isentropic compression and expansion and isothermal heat addition and rejection. The thermal efficiency of a Carnot cycle depends only on the absolute temperatures of the two reservoirs in which heat transfer takes place, and for a power cycle is:

  5. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    An adiabatic process is a process in which there is no matter or heat transfer, because a thermally insulating wall separates the system from its surroundings. For the process to be natural, either (a) work must be done on the system at a finite rate, so that the internal energy of the system increases; the entropy of the system increases even ...

  6. Reversible process (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Reversible_process...

    The dependence of work on the path of the thermodynamic process is also unrelated to reversibility, since expansion work, which can be visualized on a pressure–volume diagram as the area beneath the equilibrium curve, is different for different reversible expansion processes (e.g. adiabatic, then isothermal; vs. isothermal, then adiabatic ...

  7. Stirling cycle - Wikipedia

    en.wikipedia.org/wiki/Stirling_cycle

    The expansion space is heated externally, and the gas undergoes near-isothermal expansion. 270° to 0°, near-constant-volume (or near-isometric or isochoric) heat removal. The gas is passed through the regenerator, thus cooling the gas, and transferring heat to the regenerator for use in the next cycle. 0° to 90°, pseudo-isothermal compression.

  8. Thermodynamic system - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_system

    In some cases, when analyzing a thermodynamic process, one can assume that each intermediate state in the process is at equilibrium. Such a process is called quasistatic. [4] For a process to be reversible, each step in the process must be reversible. For a step in a process to be reversible, the system must be in equilibrium throughout the step.

  9. Template:Table of thermodynamic cycles - Wikipedia

    en.wikipedia.org/wiki/Template:Table_of...

    Cycle Compression, 1→2 Heat addition, 2→3 Expansion, 3→4 Heat rejection, 4→1 Notes Power cycles normally with external combustion - or heat pump cycles: ; Bell Coleman