When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. One-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/One-way_analysis_of_variance

    In statistics, one-way analysis of variance (or one-way ANOVA) is a technique to compare whether two or more samples' means are significantly different (using the F distribution). This analysis of variance technique requires a numeric response variable "Y" and a single explanatory variable "X", hence "one-way".

  3. Analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Analysis_of_variance

    There are two methods of concluding the ANOVA hypothesis test, both of which produce the same result: The textbook method is to compare the observed value of F with the critical value of F determined from tables. The critical value of F is a function of the degrees of freedom of the numerator and the denominator and the significance level (α).

  4. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    The formula for the one-way ANOVA F-test statistic is =, or =. The "explained variance", or "between-group variability" is = (¯ ¯) / where ¯ denotes the sample mean in the i-th group, is the number of observations in the i-th group, ¯ denotes the overall mean of the data, and denotes the number of groups.

  5. Kruskal–Wallis test - Wikipedia

    en.wikipedia.org/wiki/Kruskal–Wallis_test

    The Kruskal–Wallis test by ranks, Kruskal–Wallis test (named after William Kruskal and W. Allen Wallis), or one-way ANOVA on ranks is a non-parametric statistical test for testing whether samples originate from the same distribution. [1] [2] [3] It is used for comparing two or more independent samples of equal or different sample sizes.

  6. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    However, the different methods share the same purpose: to control variability introduced by specific factors that could influence the outcome of an experiment. The roots of blocking originated from the statistician, Ronald Fisher , following his development of ANOVA .

  7. Two-way analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Two-way_analysis_of_variance

    Following Gelman and Hill, the assumptions of the ANOVA, and more generally the general linear model, are, in decreasing order of importance: [5] the data points are relevant with respect to the scientific question under investigation; the mean of the response variable is influenced additively (if not interaction term) and linearly by the factors;

  8. Brown–Forsythe test - Wikipedia

    en.wikipedia.org/wiki/Brown–Forsythe_test

    The Brown–Forsythe test is a statistical test for the equality of group variances based on performing an Analysis of Variance (ANOVA) on a transformation of the response variable. When a one-way ANOVA is performed, samples are assumed to have been drawn from distributions with equal variance .

  9. Multivariate analysis of variance - Wikipedia

    en.wikipedia.org/wiki/Multivariate_analysis_of...

    The image above depicts a visual comparison between multivariate analysis of variance (MANOVA) and univariate analysis of variance (ANOVA). In MANOVA, researchers are examining the group differences of a singular independent variable across multiple outcome variables, whereas in an ANOVA, researchers are examining the group differences of sometimes multiple independent variables on a singular ...