Search results
Results From The WOW.Com Content Network
A body's motion preserves the status quo, but external forces can perturb this. The modern understanding of Newton's first law is that no inertial observer is privileged over any other. The concept of an inertial observer makes quantitative the everyday idea of feeling no effects of motion.
Euler's second axiom or law (law of balance of angular momentum or balance of torques) states that in an inertial frame the time rate of change of angular momentum L of an arbitrary portion of a continuous body is equal to the total applied torque M acting on that portion, and it is expressed as
Noether's theorem states that a continuous symmetry transformation of the action corresponds to a conservation law, i.e. the action (and hence the Lagrangian) does not change under a transformation parameterized by a parameter s: [(,), ˙ (,)] = [(), ˙ ()] the Lagrangian describes the same motion independent of s, which can be length, angle of ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
A prismatic joint, or slider, requires that a line, or axis, in the moving body remain co-linear with a line in the fixed body, and a plane parallel to this line in the moving body maintain contact with a similar parallel plane in the fixed body. This imposes five constraints on the relative movement of the links, which therefore has one degree ...
A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force. (This is known as the law of inertia .) Force ( F → {\displaystyle {\vec {F}}} ) is equal to the change in momentum per change in time ( Δ m v → Δ t {\displaystyle {\frac {\Delta m{\vec {v}}}{\Delta t}}} ).
Force is the action of one body on another. A force is either a push or a pull, and it tends to move a body in the direction of its action. The action of a force is characterized by its magnitude, by the direction of its action, and by its point of application (or point of contact). Thus, force is a vector quantity, because its effect depends ...
The first law of thermodynamics is a version of the law of conservation of energy, adapted for thermodynamic processes. In general, the conservation law states that the total energy of an isolated system is constant; energy can be transformed from one form to another, but can be neither created nor destroyed.