When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    An incremental formulation of the sieve [2] generates primes indefinitely (i.e., without an upper bound) by interleaving the generation of primes with the generation of their multiples (so that primes can be found in gaps between the multiples), where the multiples of each prime p are generated directly by counting up from the square of the ...

  3. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd. All integers are either even or odd. A square has even multiplicity for all prime factors (it is of the form a 2 for some a ).

  4. Palindromic prime - Wikipedia

    en.wikipedia.org/wiki/Palindromic_prime

    The first (base-10) triply palindromic prime is the 11-digit number 10000500001. It is possible that a triply palindromic prime in base 10 may also be palindromic in another base, such as base 2, but it would be highly remarkable if it were also a triply palindromic prime in that base as well.

  5. Sieve of Pritchard - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Pritchard

    The first number after 1 for wheel 2 is 5; note it as a prime. Now form wheel 3 with length 5 × 6 = 30 by first extending wheel 2 up to 30 and then deleting 5 times each number in wheel 2 (in reverse order!), to get 1 2 3 5 7 11 13 17 19 23 25 29. The first number after 1 for wheel 3 is 7; note it as a prime.

  6. Palindromic number - Wikipedia

    en.wikipedia.org/wiki/Palindromic_number

    The first nine terms of the sequence 1 2, 11 2, 111 2, 1111 2, ... form the palindromes 1, 121, 12321, 1234321, ... (sequence A002477 in the OEIS ) The only known non-palindromic number whose cube is a palindrome is 2201, and it is a conjecture the fourth root of all the palindrome fourth powers are a palindrome with 100000...000001 (10 n + 1).

  7. Multiplication table - Wikipedia

    en.wikipedia.org/wiki/Multiplication_table

    Cycles of the unit digit of multiples of integers ending in 1, 3, 7 and 9 (upper row), and 2, 4, 6 and 8 (lower row) on a telephone keypad. Figure 1 is used for multiples of 1, 3, 7, and 9. Figure 2 is used for the multiples of 2, 4, 6, and 8. These patterns can be used to memorize the multiples of any number from 0 to 10, except 5.

  8. Multiple (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiple_(mathematics)

    In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer.

  9. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    n = 561 (= 3 × 11 × 17) is a Carmichael number, thus s 560 is congruent to 1 modulo 561 for any integer s coprime to 561. The subgroup of false witnesses is, in this case, not proper; it is the entire group of multiplicative units modulo 561, which consists of 320 residues.