Search results
Results From The WOW.Com Content Network
An incremental formulation of the sieve [2] generates primes indefinitely (i.e., without an upper bound) by interleaving the generation of primes with the generation of their multiples (so that primes can be found in gaps between the multiples), where the multiples of each prime p are generated directly by counting up from the square of the ...
The first thousand values of φ(n).The points on the top line represent φ(p) when p is a prime number, which is p − 1. [1]In number theory, Euler's totient function counts the positive integers up to a given integer n that are relatively prime to n.
Each subtraction is considered as a unit and calculations are made on the basis of the 14 possible correct subtractions, that is 100-93-86-79-72-65-58-51-44-37-30-23-16-9-2. [ 2 ] Similar tests include serial threes where the counting downwards is done by threes, reciting the months of the year in reverse order, or spelling 'world' backwards.
14, 49, −21 and 0 are multiples of 7, whereas 3 and −6 are not. This is because there are integers that 7 may be multiplied by to reach the values of 14, 49, 0 and −21, while there are no such integers for 3 and −6.
A multiple of a number is the product of that number and an integer. For example, 10 is a multiple of 5 because 5 × 2 = 10, so 10 is divisible by 5 and 2. Because 10 is the smallest positive integer that is divisible by both 5 and 2, it is the least common multiple of 5 and 2.
In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that (). [1]In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n.
The Educated Monkey—a tin toy dated 1918, used as a multiplication "calculator". For example: set the monkey's feet to 4 and 9, and get the product—36—in its hands. Many common methods for multiplying numbers using pencil and paper require a multiplication table of memorized or consulted products of small numbers (typically any two ...
The first number after 1 for wheel 2 is 5; note it as a prime. Now form wheel 3 with length 5 × 6 = 30 by first extending wheel 2 up to 30 and then deleting 5 times each number in wheel 2 (in reverse order!), to get 1 2 3 5 7 11 13 17 19 23 25 29. The first number after 1 for wheel 3 is 7; note it as a prime.