When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Computational complexity of mathematical operations - Wikipedia

    en.wikipedia.org/wiki/Computational_complexity...

    Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.

  3. Trachtenberg system - Wikipedia

    en.wikipedia.org/wiki/Trachtenberg_system

    Trachtenberg defined this algorithm with a kind of pairwise multiplication where two digits are multiplied by one digit, essentially only keeping the middle digit of the result. By performing the above algorithm with this pairwise multiplication, even fewer temporary results need to be held.

  4. IBM 601 - Wikipedia

    en.wikipedia.org/wiki/IBM_601

    The IBM 601 Multiplying Punch was a unit record machine that could read two numbers from a punched card and punch their product in a blank field on the same card. The factors could be up to eight decimal digits long. [1] The 601 was introduced in 1931 and was the first IBM machine that could do multiplication. [2] [3]

  5. List of arbitrary-precision arithmetic software - Wikipedia

    en.wikipedia.org/wiki/List_of_arbitrary...

    Go: the standard library package math/big implements arbitrary-precision integers (Int type), rational numbers (Rat type), and floating-point numbers (Float type) Guile: the built-in exact numbers are of arbitrary precision. Example: (expt 10 100) produces the expected (large) result. Exact numbers also include rationals, so (/ 3 4) produces 3/4.

  6. Arbitrary-precision arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arbitrary-precision_arithmetic

    But if exact values for large factorials are desired, then special software is required, as in the pseudocode that follows, which implements the classic algorithm to calculate 1, 1×2, 1×2×3, 1×2×3×4, etc. the successive factorial numbers. constants: Limit = 1000 % Sufficient digits.

  7. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    On a typical computer system, a double-precision (64-bit) binary floating-point number has a coefficient of 53 bits (including 1 implied bit), an exponent of 11 bits, and 1 sign bit. Since 2 10 = 1024, the complete range of the positive normal floating-point numbers in this format is from 2 −1022 ≈ 2 × 10 −308 to approximately 2 1024 ≈ ...

  8. Floating-point error mitigation - Wikipedia

    en.wikipedia.org/wiki/Floating-point_error...

    Huberto M. Sierra noted in his 1956 patent "Floating Decimal Point Arithmetic Control Means for Calculator": [1] Thus under some conditions, the major portion of the significant data digits may lie beyond the capacity of the registers. Therefore, the result obtained may have little meaning if not totally erroneous.

  9. Decimal floating point - Wikipedia

    en.wikipedia.org/wiki/Decimal_floating_point

    Like the binary floating-point formats, the number is divided into a sign, an exponent, and a significand. Unlike binary floating-point, numbers are not necessarily normalized; values with few significant digits have multiple possible representations: 1×10 2 =0.1×10 3 =0.01×10 4, etc. When the significand is zero, the exponent can be any ...