When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Composite number - Wikipedia

    en.wikipedia.org/wiki/Composite_number

    [1] [2] Every positive integer is composite, prime, or the unit 1, so the composite numbers are exactly the numbers that are not prime and not a unit. [3] [4] E.g., the integer 14 is a composite number because it is the product of the two smaller integers 2 × 7 but the integers 2 and 3 are not because each can only be divided by one and itself ...

  3. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    a composite number has more than just 1 and itself as divisors; that is, d(n) > 2; a highly composite number has a number of positive divisors that is greater than any lesser number; that is, d(n) > d(m) for every positive integer m < n. Counterintuitively, the first two highly composite numbers are not composite numbers.

  4. Superior highly composite number - Wikipedia

    en.wikipedia.org/wiki/Superior_highly_composite...

    Divisor function d(n) up to n = 250 Prime-power factors. In number theory, a superior highly composite number is a natural number which, in a particular rigorous sense, has many divisors. Particularly, it is defined by a ratio between the number of divisors an integer has and that integer raised to some positive power.

  5. Highly composite number - Wikipedia

    en.wikipedia.org/wiki/Highly_composite_number

    Highly composite numbers greater than 6 are also abundant numbers. One need only look at the three largest proper divisors of a particular highly composite number to ascertain this fact. It is false that all highly composite numbers are also Harshad numbers in base 10. The first highly composite number that is not a Harshad number is ...

  6. Sieve of Eratosthenes - Wikipedia

    en.wikipedia.org/wiki/Sieve_of_Eratosthenes

    Euler's proof of the zeta product formula contains a version of the sieve of Eratosthenes in which each composite number is eliminated exactly once. [9] The same sieve was rediscovered and observed to take linear time by Gries & Misra (1978). [19] It, too, starts with a list of numbers from 2 to n in order. On each step the first element is ...

  7. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    Ω(n), the prime omega function, is the number of prime factors of n counted with multiplicity (so it is the sum of all prime factor multiplicities). A prime number has Ω(n) = 1. The first: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37 (sequence A000040 in the OEIS). There are many special types of prime numbers. A composite number has Ω(n) > 1.

  8. Carmichael number - Wikipedia

    en.wikipedia.org/wiki/Carmichael_number

    In-between these two conditions lies the definition of Carmichael number of order m for any positive integer m as any composite number n such that p n is an endomorphism on every Z n-algebra that can be generated as Z n-module by m elements. Carmichael numbers of order 1 are just the ordinary Carmichael numbers.

  9. 5040 (number) - Wikipedia

    en.wikipedia.org/wiki/5040_(number)

    5040 (five thousand [and] forty) is the natural number following 5039 and preceding 5041.. It is a factorial (7!), the 8th superior highly composite number, [1] the 19th highly composite number, [2] an abundant number, the 8th colossally abundant number [3] and the number of permutations of 4 items out of 10 choices (10 × 9 × 8 × 7 = 5040).