Search results
Results From The WOW.Com Content Network
The efficiency of a thermoelectric device for electricity generation is given by , defined as =.. The maximum efficiency of a thermoelectric device is typically described in terms of its device figure of merit where the maximum device efficiency is approximately given by [7] = + ¯ + ¯ +, where is the fixed temperature at the hot junction, is the fixed temperature at the surface being cooled ...
The performance of thermoelectric materials can be evaluated by the figure of merit, = /, in which is the Seebeck coefficient, is the electrical conductivity and is the thermal conductivity. In order to improve the thermoelectric performance of materials, the power factor ( S 2 σ {\displaystyle S^{2}\sigma } ) needs to be maximized and the ...
Only a few known materials to date are identified as thermoelectric materials. Most thermoelectric materials today have a zT, the figure of merit, value of around 1, such as in bismuth telluride (Bi 2 Te 3) at room temperature and lead telluride (PbTe) at 500–700 K. However, in order to be competitive with other power generation systems, TEG ...
A trigonal Te with the space group of P3 1 21 can transfer into a topological insulator phase, which is suitable for thermoelectric material. Though often not considered as a thermoelectric material alone, polycrystalline tellurium does show great thermoelectric performance with the thermoelectric figure of merit, zT, as high as 1.0, which is ...
The Seebeck coefficient (also known as thermopower, [1] thermoelectric power, and thermoelectric sensitivity) of a material is a measure of the magnitude of an induced thermoelectric voltage in response to a temperature difference across that material, as induced by the Seebeck effect. [2]
This material is used in the radioisotope thermoelectric generators (RTGs) that power Voyager 1, Voyager 2, Galileo, Ulysses, Cassini, and New Horizons spacecraft. SiGe thermoelectric material converts enough radiated heat into electrical power to fully meet the power demands of each spacecraft. The properties of the material and the remaining ...
Noise figure of a radio receiver; The thermoelectric figure of merit, zT, a material constant proportional to the efficiency of a thermoelectric couple made with the material; The figure of merit of digital-to-analog converter, calculated as (power dissipation)/(2 ENOB × effective bandwidth) [J/Hz] Luminous efficacy of lighting; Profit of a ...
A schematic of a HH thermoelectric. X and Z have a larger electronegativity difference between them and form an NaCl-type ionic sublattice while Y and Z form a ZnS-type covalent sublattice. The half-Heusler compounds have distinctive properties and high tunability which makes the class very promising as thermoelectric materials.