When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Hilbert_space

    The exact nature of this Hilbert space is dependent on the system; for example, the position and momentum states for a single non-relativistic spin zero particle is the space of all square-integrable functions, while the states for the spin of a single proton are unit elements of the two-dimensional complex Hilbert space of spinors.

  3. Hilbert C*-module - Wikipedia

    en.wikipedia.org/wiki/Hilbert_C*-module

    The fact that there is a unique separable Hilbert space has a generalization to Hilbert modules in the form of the Kasparov stabilization theorem, which states that if is a countably generated Hilbert -module, there is an isometric isomorphism () (). [11]

  4. Infinite-dimensional vector function - Wikipedia

    en.wikipedia.org/wiki/Infinite-dimensional...

    Most theorems on integration and differentiation of scalar functions can be generalized to vector-valued functions, often using essentially the same proofs.Perhaps the most important exception is that absolutely continuous functions need not equal the integrals of their (a.e.) derivatives (unless, for example, is a Hilbert space); see Radon–Nikodym theorem

  5. Compact operator on Hilbert space - Wikipedia

    en.wikipedia.org/wiki/Compact_operator_on...

    In the mathematical discipline of functional analysis, the concept of a compact operator on Hilbert space is an extension of the concept of a matrix acting on a finite-dimensional vector space; in Hilbert space, compact operators are precisely the closure of finite-rank operators (representable by finite-dimensional matrices) in the topology induced by the operator norm.

  6. Mathematical formulation of quantum mechanics - Wikipedia

    en.wikipedia.org/wiki/Mathematical_formulation...

    As such, quantum states form a ray in projective Hilbert space, not a vector. Many textbooks fail to make this distinction, which could be partly a result of the fact that the Schrödinger equation itself involves Hilbert-space "vectors", with the result that the imprecise use of "state vector" rather than ray is very difficult to avoid. [5]

  7. Glossary of functional analysis - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_functional...

    A bornological space. Birkhoff orthogonality Two vectors x and y in a normed linear space are said to be Birkhoff orthogonal if ‖ + ‖ ‖ ‖ for all scalars λ. If the normed linear space is a Hilbert space, then it is equivalent to the usual orthogonality. Borel Borel functional calculus

  8. Separable space - Wikipedia

    en.wikipedia.org/wiki/Separable_space

    A subspace of a separable space need not be separable (see the Sorgenfrey plane and the Moore plane), but every open subspace of a separable space is separable (Willard 1970, Th 16.4b). Also every subspace of a separable metric space is separable. In fact, every topological space is a subspace of a separable space of the same cardinality.

  9. Kirszbraun theorem - Wikipedia

    en.wikipedia.org/wiki/Kirszbraun_theorem

    The version for Hilbert spaces can for example be found in (Schwartz 1969, p. 21). [2] If H 1 is a separable space (in particular, if it is a Euclidean space) the result is true in Zermelo–Fraenkel set theory; for the fully general case, it appears to need some form of the axiom of choice; the Boolean prime ideal theorem is known to be ...