When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point. (In fact, one can show that f takes both positive and negative values in small neighborhoods around (0, 0) and so this point is a saddle point of f.)

  3. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  4. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    For a function of more than one variable, the second-derivative test generalizes to a test based on the eigenvalues of the function's Hessian matrix at the critical point. In particular, assuming that all second-order partial derivatives of f are continuous on a neighbourhood of a critical point x , then if the eigenvalues of the Hessian at x ...

  5. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    The second-derivative test for functions of one and two variables is simpler than the general case. In one variable, the Hessian contains exactly one second derivative; if it is positive, then is a local minimum, and if it is negative, then is a local maximum; if it is zero, then the test is inconclusive. In two variables, the determinant can ...

  6. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    A cubic function is concave (left half) when its first derivative (red) is monotonically decreasing i.e. its second derivative (orange) is negative, and convex (right half) when its first derivative is monotonically increasing i.e. its second derivative is positive

  7. Glossary of calculus - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_calculus

    For a twice differentiable function of a single variable, if the second derivative is always greater than or equal to zero for its entire domain then the function is convex. [20] Well-known examples of convex functions include the quadratic function and the exponential function. Cramer's rule

  8. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    The second derivative test can still be used to analyse critical points by considering the eigenvalues of the Hessian matrix of second partial derivatives of the function at the critical point. If all of the eigenvalues are positive, then the point is a local minimum; if all are negative, it is a local maximum.

  9. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    One can do this either by evaluating the function at each point and taking the maximum, or by analyzing the derivatives further, using the first derivative test, the second derivative test, or the higher-order derivative test.