When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Second derivative - Wikipedia

    en.wikipedia.org/wiki/Second_derivative

    The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.

  3. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    In one variable, the Hessian contains exactly one second derivative; if it is positive, then is a local minimum, and if it is negative, then is a local maximum; if it is zero, then the test is inconclusive. In two variables, the determinant can be used, because the determinant is the product of the eigenvalues. If it is positive, then the ...

  4. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    For a function of more than one variable, the second-derivative test generalizes to a test based on the eigenvalues of the function's Hessian matrix at the critical point. In particular, assuming that all second-order partial derivatives of f are continuous on a neighbourhood of a critical point x , then if the eigenvalues of the Hessian at x ...

  5. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    At the remaining critical point (0, 0) the second derivative test is insufficient, and one must use higher order tests or other tools to determine the behavior of the function at this point. (In fact, one can show that f takes both positive and negative values in small neighborhoods around (0, 0) and so this point is a saddle point of f.)

  6. Concave function - Wikipedia

    en.wikipedia.org/wiki/Concave_function

    A cubic function is concave (left half) when its first derivative (red) is monotonically decreasing i.e. its second derivative (orange) is negative, and convex (right half) when its first derivative is monotonically increasing i.e. its second derivative is positive

  7. Notation for differentiation - Wikipedia

    en.wikipedia.org/wiki/Notation_for_differentiation

    D-notation leaves implicit the variable with respect to which differentiation is being done. However, this variable can also be made explicit by putting its name as a subscript: if f is a function of a variable x, this is done by writing [6] for the first derivative, for the second derivative,

  8. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    In this sense, the Jacobian may be regarded as a kind of "first-order derivative" of a vector-valued function of several variables. In particular, this means that the gradient of a scalar-valued function of several variables may too be regarded as its "first-order derivative".

  9. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    If one extends this function by defining () = then the extended function is continuous and everywhere differentiable (it is differentiable at 0 with derivative 0), but has rather unexpected behavior near 0: in any neighborhood of 0 it attains 0 infinitely many times, but also equals (a positive number) infinitely often.