Search results
Results From The WOW.Com Content Network
The practical impact of the "Coriolis effect" is mostly caused by the horizontal acceleration component produced by horizontal motion. There are other components of the Coriolis effect. Westward-traveling objects are deflected downwards, while eastward-traveling objects are deflected upwards. [44] This is known as the Eötvös effect. This ...
A Taylor column is a fluid dynamics phenomenon that occurs as a result of the Coriolis effect. It was named after Geoffrey Ingram Taylor . Rotating fluids that are perturbed by a solid body tend to form columns parallel to the axis of rotation called Taylor columns.
A requirement for the induction of field is a rotating fluid. Rotation in the outer core is supplied by the Coriolis effect caused by the rotation of the Earth. The Coriolis force tends to organize fluid motions and electric currents into columns (also see Taylor columns) aligned with the rotation axis.
Thus the Coriolis parameter, , is the angular velocity or frequency required to maintain a body at a fixed circle of latitude or zonal region. If the Coriolis parameter is large, the effect of the Earth's rotation on the body is significant since it will need a larger angular frequency to stay in equilibrium with the Coriolis forces.
Support for the idea that the Coriolis field is a real physical effect and not just a mathematical artifact is justified by Machian theory. It notes that evidence of the field's existence is not only visible to the rotating observer; its distortion is also visible and verifiable for non-rotating onlookers.
A slope of one part in one million in sea surface height, for example, will result in a current of 10 cm/s at mid-latitudes. The fact that the Coriolis effect is largest at the poles and weak at the equator results in sharp, relatively steady western boundary currents which are absent on eastern boundaries. Also see secondary circulation effects.
Gaspard-Gustave de Coriolis (French: [ɡaspaʁ ɡystav də kɔʁjɔlis]; 21 May 1792 – 19 September 1843) was a French mathematician, mechanical engineer and scientist.He is best known for his work on the supplementary forces that are detected in a rotating frame of reference, leading to the Coriolis effect.
In fluid dynamics, the Coriolis–Stokes force is a forcing of the mean flow in a rotating fluid due to interaction of the Coriolis effect and wave-induced Stokes drift. This force acts on water independently of the wind stress. [1] This force is named after Gaspard-Gustave Coriolis and George Gabriel Stokes, two