Search results
Results From The WOW.Com Content Network
SAE 316L grade stainless steel, sometimes referred to as A4 stainless steel or marine grade stainless steel, is the second most common austenitic stainless steel after 304/A2 stainless steel. Its primary alloying constituents after iron , are chromium (between 16–18%), nickel (10–12%) and molybdenum (2–3%), up to 2% manganese , [ 1 ] with ...
SAE 316 stainless steel is a molybdenum-alloyed steel and the second most common austenitic stainless steel (after grade 304). It is the preferred steel for use in marine environments because of its greater resistance to pitting corrosion than most other grades of steel without molybdenum. [ 1 ]
The SAE steel grades system is a standard alloy numbering system (SAE J1086 – Numbering Metals and Alloys) for steel grades maintained by SAE International. In the 1930s and 1940s, the American Iron and Steel Institute (AISI) and SAE were both involved in efforts to standardize such a numbering system for steels. These efforts were similar ...
SAE 316 and SAE 316L stainless steel, also referred to as marine grade stainless, is a chromium, nickel, molybdenum alloy of steel that exhibits relatively good strength and corrosion resistance. 316L is the low carbon version of 316 stainless steel. [2] 316L in particular is biocompatible when produced to ASTM F138 / F139. [3]
Alloy 20 (Carpenter 20) is an austenitic stainless steel possessing excellent resistance to hot sulfuric acid and many other aggressive environments which would readily attack type 316 stainless. This alloy exhibits superior resistance to stress-corrosion cracking in boiling 20–40% sulfuric acid.
The Unified Numbering System for Metals and Alloys (UNS) is an alloy designation system widely accepted in North America.Each UNS number relates to a specific metal or alloy and defines its specific chemical composition, or in some cases a specific mechanical or physical property.
904L is an austenitic stainless steel.It is softer than 316L, [1] [2] and its molybdenum addition gives it superior resistance to localized attack (pitting and crevice corrosion) by chlorides and greater resistance reducing acids; in particular, its copper addition gives it useful corrosion resistance to all concentrations of sulfuric acid.
This page was last edited on 25 March 2018, at 13:46 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...