Search results
Results From The WOW.Com Content Network
An axo-axonic synapse is a type of synapse, formed by one neuron projecting its axon terminals onto another neuron's axon. [ 1 ] Axo-axonic synapses have been found and described more recently than the other more familiar types of synapses, such as axo-dendritic synapses and axo-somatic synapses.
The strength of a synapse has been defined by Bernard Katz as the product of (presynaptic) release probability pr, quantal size q (the postsynaptic response to the release of a single neurotransmitter vesicle, a 'quantum'), and n, the number of release sites. "Unitary connection" usually refers to an unknown number of individual synapses ...
In the nervous system, a synapse [1] is a structure that allows a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or a target effector cell. Synapses can be classified as either chemical or electrical, depending on the mechanism of signal transmission between neurons.
The synapse contains at least two clusters of synaptic vesicles, the readily releasable pool and the reserve pool. The readily releasable pool is located within the active zone and connected directly to the presynaptic membrane while the reserve pool is clustered by cytoskeletal and is not directly connected to the active zone.
Presynaptic inhibition is a phenomenon in which an inhibitory neuron provides synaptic input to the axon of another neuron (axo-axonal synapse) to make it less likely to fire an action potential. Presynaptic inhibition occurs when an inhibitory neurotransmitter, like GABA , acts on GABA receptors on the axon terminal .
An axo-axonal gated synapse: Neuron C gates the synapse between Neuron A and B. Synaptic gating is the ability of neural circuits to gate inputs by either suppressing or facilitating specific synaptic activity .
Axon terminals are specialized to release neurotransmitters very rapidly by exocytosis. [1] Neurotransmitter molecules are packaged into synaptic vesicles that cluster beneath the axon terminal membrane on the presynaptic side (A) of a synapse.
Once at the synapse, synaptic vesicles are loaded with a neurotransmitter. Loading of transmitter is an active process requiring a neurotransmitter transporter and a proton pump ATPase that provides an electrochemical gradient. These transporters are selective for different classes of transmitters.