When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isothermal process - Wikipedia

    en.wikipedia.org/wiki/Isothermal_process

    An isothermal process is a type of thermodynamic process in which the temperature T of a system remains constant: ΔT = 0. This typically occurs when a system is in contact with an outside thermal reservoir, and a change in the system occurs slowly enough to allow the system to be continuously adjusted to the temperature of the reservoir through heat exchange (see quasi-equilibrium).

  3. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    An example of such an exchange would be an isentropic expansion or compression that entails work done on or by the flow. For an isentropic flow, entropy density can vary between different streamlines. If the entropy density is the same everywhere, then the flow is said to be homentropic.

  4. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    Since the total change in entropy must always be larger or equal to zero, we obtain the inequality W ≤ − Δ F . {\displaystyle W\leq -\Delta F.} We see that the total amount of work that can be extracted in an isothermal process is limited by the free-energy decrease, and that increasing the free energy in a reversible process requires work ...

  5. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Heat transfer in the isotherm steps (isothermal expansion and isothermal compression) of the Carnot cycle was found to be proportional to the temperature of a system (known as its absolute temperature). This relationship was expressed in an increment of entropy that is equal to incremental heat transfer divided by temperature.

  6. Thermodynamic cycle - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_cycle

    Entropy is a state function and is defined in an absolute sense through the Third Law of Thermodynamics as S = ∫ 0 T d Q r e v T {\displaystyle S=\int _{0}^{T}{dQ_{rev} \over T}} where a reversible path is chosen from absolute zero to the final state, so that for an isothermal reversible process

  7. Thermodynamic process - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_process

    The temperature-entropy conjugate pair is concerned with the transfer of energy, especially for a closed system. An isothermal process occurs at a constant temperature. An example would be a closed system immersed in and thermally connected with a large constant-temperature bath. Energy gained by the system, through work done on it, is lost to ...

  8. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    Thus, they are essentially equations of state, and using the fundamental equations, experimental data can be used to determine sought-after quantities like G (Gibbs free energy) or H . [1] The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy , and volume for a closed system in ...

  9. Gibbs–Helmholtz equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Helmholtz_equation

    The definition of the Gibbs function is = + where H is the enthalpy defined by: = +. Taking differentials of each definition to find dH and dG, then using the fundamental thermodynamic relation (always true for reversible or irreversible processes): = where S is the entropy, V is volume, (minus sign due to reversibility, in which dU = 0: work other than pressure-volume may be done and is equal ...