When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotational energy - Wikipedia

    en.wikipedia.org/wiki/Rotational_energy

    An example is the calculation of the rotational kinetic energy of the Earth. As the Earth has a sidereal rotation period of 23.93 hours, it has an angular velocity of 7.29 × 10 −5 rad·s −1. [2] The Earth has a moment of inertia, I = 8.04 × 10 37 kg·m 2. [3] Therefore, it has a rotational kinetic energy of 2.14 × 10 29 J.

  3. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    E t is the translational kinetic energy; E r is the rotational energy or angular kinetic energy in the rest frame; Thus the kinetic energy of a tennis ball in flight is the kinetic energy due to its rotation, plus the kinetic energy due to its translation.

  4. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body.

  5. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Every conservative force has a potential energy. By following two principles one can consistently assign a non-relative value to U: Wherever the force is zero, its potential energy is defined to be zero as well. Whenever the force does work, potential energy is lost.

  6. Rigid rotor - Wikipedia

    en.wikipedia.org/wiki/Rigid_rotor

    An arbitrarily shaped rigid rotor is a rigid body of arbitrary shape with its center of mass fixed (or in uniform rectilinear motion) in field-free space R 3, so that its energy consists only of rotational kinetic energy (and possibly constant translational energy that can be ignored).

  7. Angular momentum - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum

    The trivial case of the angular momentum of a body in an orbit is given by = where is the mass of the orbiting object, is the orbit's frequency and is the orbit's radius.. The angular momentum of a uniform rigid sphere rotating around its axis, instead, is given by = where is the sphere's mass, is the frequency of rotation and is the sphere's radius.

  8. Energy–momentum relation - Wikipedia

    en.wikipedia.org/wiki/Energy–momentum_relation

    Total energy is the sum of rest energy = and relativistic kinetic energy: = = + Invariant mass is mass measured in a center-of-momentum frame. For bodies or systems with zero momentum, it simplifies to the mass–energy equation E 0 = m 0 c 2 {\displaystyle E_{0}=m_{0}c^{2}} , where total energy in this case is equal to rest energy.

  9. K-epsilon turbulence model - Wikipedia

    en.wikipedia.org/wiki/K-epsilon_turbulence_model

    Unlike earlier turbulence models, k-ε model focuses on the mechanisms that affect the turbulent kinetic energy. The mixing length model lacks this kind of generality. [2] The underlying assumption of this model is that the turbulent viscosity is isotropic, in other words, the ratio between Reynolds stress and mean rate of deformations is the same in all directions.